But when a premenopausal woman’s testosterone levels are too high, it can lead to polycystic ovary syndrome (PCOS), a condition that increases the risk of irregular or absent menstrual cycles, infertility, excess hair growth, skin problems, and miscarriage. High levels of testosterone in women, whether caused by PCOS or by another condition, can cause serious health conditions such as insulin resistance, diabetes, high cholesterol, high blood pressure, and heart disease. (12)
Erectile dysfunction is known to be associated with general health status, thus, lifestyle modification improves erectile function and decreases the rate of decline of function with aging. One year after discontinuation of smoking, patients were found to have a 25% improvement in erectile quality.16 In addition, multivariate analysis found obesity is associated with erectile dysfunction with an approximately 50% increase in ED in obese men as compared with normal weight men.17
Two of the immediate metabolites of testosterone, 5α-DHT and estradiol, are biologically important and can be formed both in the liver and in extrahepatic tissues.[147] Approximately 5 to 7% of testosterone is converted by 5α-reductase into 5α-DHT, with circulating levels of 5α-DHT about 10% of those of testosterone, and approximately 0.3% of testosterone is converted into estradiol by aromatase.[2][147][153][154] 5α-Reductase is highly expressed in the male reproductive organs (including the prostate gland, seminal vesicles, and epididymides),[155] skin, hair follicles, and brain[156] and aromatase is highly expressed in adipose tissue, bone, and the brain.[157][158] As much as 90% of testosterone is converted into 5α-DHT in so-called androgenic tissues with high 5α-reductase expression,[148] and due to the several-fold greater potency of 5α-DHT as an AR agonist relative to testosterone,[159] it has been estimated that the effects of testosterone are potentiated 2- to 3-fold in such tissues.[160]
Sexual dysfunction is highly prevalent in men and women. In the MMAS, 52% of the respondents reported some degree of erectile difficulty. Complete ED, defined as (1) the total inability to obtain or maintain an erection during sexual stimulation and (2) the absence of nocturnal erections, occurred in 10% of the respondents. Mild and moderate ED occurred in 17% and 25% of responders, respectively. [15]
Testosterone levels generally peak during adolescence and early adulthood. As you get older, your testosterone level gradually declines — typically about 1 percent a year after age 30 or 40. It is important to determine in older men if a low testosterone level is simply due to the decline of normal aging or if it is due to a disease (hypogonadism).
Testosterone is only one of many factors that influence aggression and the effects of previous experience and environmental stimuli have been found to correlate more strongly. A few studies indicate that the testosterone derivative estradiol (one form of estrogen) might play an important role in male aggression.[66][67][68][69] Studies have also found that testosterone facilitates aggression by modulating vasopressin receptors in the hypothalamus.[70]
The primary nerve fibers to the penis are from the dorsal nerve of the penis, a branch of the pudendal nerve. The cavernosal nerves are a part of the autonomic nervous system and incorporate both sympathetic and parasympathetic fibers. They travel posterolaterally along the prostate and enter the corpora cavernosa and corpus spongiosum to regulate blood flow during erection and detumescence. The dorsal somatic nerves are also branches of the pudendal nerves. They are primarily responsible for penile sensation. [10]

Epidemiological data has associated low testosterone levels with atherogenic lipid parameters, including lower HDL cholesterol (Lichtenstein et al 1987; Haffner et al 1993; Van Pottelbergh et al 2003) and higher total cholesterol (Haffner et al 1993; Van Pottelbergh et al 2003), LDL cholesterol (Haffner et al 1993) and triglyceride levels (Lichtenstein et al 1987; Haffner et al 1993). Furthermore, these relationships are independent of other factors such as age, obesity and glucose levels (Haffner et al 1993; Van Pottelbergh et al 2003). Interventional trails of testosterone replacement have shown that treatment causes a decrease in total cholesterol. A recent meta-analysis of 17 randomized controlled trials confirmed this and found that the magnitude of changes was larger in trials of patients with lower baseline testosterone levels (Isidori et al 2005). The same meta-analysis found no significant overall change in LDL or HDL cholesterol levels but in trials with baseline testosterone levels greater than 10 nmol/l, there was a small reduction in HDL cholesterol with testosterone treatment.

The PDE5 inhibitors sildenafil (Viagra), vardenafil (Levitra) and tadalafil (Cialis) are prescription drugs which are taken orally.[22]:20–21 Additionally, a cream combining alprostadil with the permeation enhancer DDAIP has been approved in Canada as a first line treatment for erectile dysfunction.[25] Penile injections, on the other hand, can involve one of the following medications: papaverine, phentolamine, and prostaglandin E1.[22]:25
A testicular action was linked to circulating blood fractions – now understood to be a family of androgenic hormones – in the early work on castration and testicular transplantation in fowl by Arnold Adolph Berthold (1803–1861).[174] Research on the action of testosterone received a brief boost in 1889, when the Harvard professor Charles-Édouard Brown-Séquard (1817–1894), then in Paris, self-injected subcutaneously a "rejuvenating elixir" consisting of an extract of dog and guinea pig testicle. He reported in The Lancet that his vigor and feeling of well-being were markedly restored but the effects were transient,[175] and Brown-Séquard's hopes for the compound were dashed. Suffering the ridicule of his colleagues, he abandoned his work on the mechanisms and effects of androgens in human beings.
Unlike women, who experience a rapid drop in hormone levels at menopause, men experience a more gradual decrease of testosterone levels over time. The older the man, the more likely he is to experience below-normal testosterone levels. Men with testosterone levels below 300 ng/dL may experience some degree of low T symptoms. Your doctor can conduct a blood test and recommend treatment if needed. They can discuss the potential benefits and risks of testosterone medication, as well.
Levels of testosterone naturally decrease with age, but exactly what level constitutes "low T," or hypogonadism, is controversial, Harvard Medical School said. Testosterone levels vary wildly, and can even differ depending on the time of day they're measured (levels tend to be lower in the evenings). The National Institutes of Health includes the following as possible symptoms of low testosterone:

Erectile dysfunction (ED) is commonly called impotence. It’s a condition in which a man can’t achieve or maintain an erection during sexual performance. Symptoms may also include reduced sexual desire or libido. Your doctor is likely to diagnose you with ED if the condition lasts for more than a few weeks or months. ED affects as many as 30 million men in the United States.
THIS TOOL DOES NOT PROVIDE MEDICAL ADVICE. It is intended for general informational purposes only and does not address individual circumstances. It is not a substitute for professional medical advice, diagnosis or treatment and should not be relied on to make decisions about your health. Never ignore professional medical advice in seeking treatment because of something you have read on the WebMD Site. If you think you may have a medical emergency, immediately call your doctor or dial 911.

Dr. Adriane Fugh-Berman, associate professor of pharmacology and director of the industry watchdog group PharmedOut.org at Georgetown University School of Medicine, calls this kind of direct-to-consumer pharmaceutical advertising "evil." She likened the efforts to sell TRT to earlier campaigns to push hormone replacement therapy for post-menopausal women. "They stole the playbook," she said. "This hormone is being thrown around like sugar water."
NO is produced by the enzyme NO synthase (NOS). [13] NOS plays many roles, ranging from homeostasis to immune system regulation. To date, 3 subtypes have been identified: nNOS, iNOS, and eNOS, which are produced by the genes NOS1, NOS2, and NOS3, respectively. This nomenclature is derived from the sources of the original isolates: neuronal tissue (nNOS), immunoactivated macrophage cell lines (iNOS), and vascular endothelium (eNOS). The subtypes are not, however, limited to the tissues from which they were first isolated.
"Low T" is anything but inevitable. BMJ's Drug and Therapeutics Bulletin says that around 80 percent of 60-year-old men, and half of those in their eighties, have testosterone levels within the normal range for younger men. It concluded, "The evidence that an age-related reduction in testosterone levels causes specific symptoms is weak." The Food and Drug Administration (FDA) meanwhile has not approved testosterone use to improve strength, athletic performance, physical appearance, or prevent aging. And a 2004 report from the Institute of Medicine ("Testosterone and Aging: Clinical Research Directions") called TRT for age-related testosterone decline a "scientifically unproven method."
In a prospective study from the Prostate Cancer Prevention Trial database, Thompson et al reported that men presenting with ED had a significantly higher chance of developing a cardiovascular event over a 7-year follow-up period. [55] The hazard ratio was 1.45, which is in the range of risk associated with current smoking or a family history of MI.
Transdermal preparations of testosterone utilize the fact that the skin readily absorbs steroid hormones. Initial transdermal preparations took the form of scrotal patches with testosterone loaded on to a membranous patch. Absorption from the scrotal skin was particularly good and physiological levels of testosterone with diurnal variation were reliably attained. The scrotal patches are now rarely used because they require regular shaving or clipping of scrotal hair and because they produce rather high levels of dihydrotestosterone compared to testosterone (Behre et al 1999). Subsequently, non-scrotal patches were developed but the absorptive capacity of non-scrotal skin is much lower, so these patches contain additional chemicals which enhance absorption. The non-scrotal skin patches produce physiological testosterone levels without supraphysiological dihydrotestosterone levels. Unfortunately, the patches produce a high rate of local skin reactions often leading to discontinuation (Parker and Armitage 1999). In the last few years, transdermal testosterone gel preparations have become available. These require daily application by patients and produce steady state physiological testosterone levels within a few days in most patients (Swerdloff et al 2000; Steidle et al 2003). The advantages compared with testosterone patches include invisibility, reduced skin irritation and the ability to adjust dosage, but concerns about transfer to women and children on close skin contact necessitate showering after application or coverage with clothes.
In males, testosterone is required for the development of male sex organs such as increased penis and testes size. The hormone also promotes the development of sexual male characteristics during puberty such as voice deepening and the growth of armpit, chest and pubic hair. Testosterone plays an important role in maintaining sex drive, sperm production, muscle strength and bone mass. A healthy level of testosterone is also protective against bone disorders such as osteoporosis.
But if a man with sleep apnea is diagnosed with low testosterone alone, taking the supplemental hormone can worsen sleep apnea. That's why it's crucial for men with low testosterone to get a thorough workup by an endocrinologist so underlying conditions that can cause low testosterone, such as sleep apnea or pituitary-gland tumors, don't go undiagnosed, Dr. Goodman says.
The participants were seen every 4 weeks. Blood was taken to measure hormone levels, and questionnaires were given to assess physical function, health status, vitality, and sexual function. Body fat and muscle measurements were also taken at the beginning and end of the 16 weeks. The study was funded in part by NIH’s National Institute on Aging (NIA) and National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK). Results appeared in the September 12, 2013, issue of the New England Journal of Medicine. 

Dr. Wassersug, whose background is in evolutionary biology, also noted that lower testosterone in older men may be adaptive, a positive benefit, as our bodies age and become increasingly frail. "The argument can be made," he said, "that it's not beneficial to have the mindset of a 19-year-old when you are 49-years-old, because if you are aggressive enough to get into a conflict with an actual 19-year-old, you are going to get killed."
In the U.S., where millions watch the Super Bowl simply to see the clever and costly commercials, and where pharmaceuticals with potentially deadly side effects are pushed on the public at every turn, it's probably not surprising that ads for "Low T" are now splayed across billboards in Florida, with its huge number of older residents, or that a chain of "Low T Centers" has sprung up in Texas and around the heartland.

Epidemiological data has associated low testosterone levels with atherogenic lipid parameters, including lower HDL cholesterol (Lichtenstein et al 1987; Haffner et al 1993; Van Pottelbergh et al 2003) and higher total cholesterol (Haffner et al 1993; Van Pottelbergh et al 2003), LDL cholesterol (Haffner et al 1993) and triglyceride levels (Lichtenstein et al 1987; Haffner et al 1993). Furthermore, these relationships are independent of other factors such as age, obesity and glucose levels (Haffner et al 1993; Van Pottelbergh et al 2003). Interventional trails of testosterone replacement have shown that treatment causes a decrease in total cholesterol. A recent meta-analysis of 17 randomized controlled trials confirmed this and found that the magnitude of changes was larger in trials of patients with lower baseline testosterone levels (Isidori et al 2005). The same meta-analysis found no significant overall change in LDL or HDL cholesterol levels but in trials with baseline testosterone levels greater than 10 nmol/l, there was a small reduction in HDL cholesterol with testosterone treatment.

The Food and Drug Administration (FDA) does not recommend alternative therapies to treat sexual dysfunction.[27] Many products are advertised as "herbal viagra" or "natural" sexual enhancement products, but no clinical trials or scientific studies support the effectiveness of these products for the treatment of ED, and synthetic chemical compounds similar to sildenafil have been found as adulterants in many of these products.[28][29][30][31][32] The FDA has warned consumers that any sexual enhancement product that claims to work as well as prescription products is likely to contain such a contaminant.[33]

The development of an erection is a complex event involving integration of psychologic, neurologic, endocrine, vascular, and local anatomic systems. Positron emission tomography scanning studies have suggested that sexual arousal is activated in higher cortical centers that then stimulate the medial preoptic and paraventricular nuclei of the hypothalamus.5 These signals ultimately descend through a complex neural network involving the parasympathetic nervous system and eventually activate parasympathetic nerves in the sacral area (S2 to S4).
All devices that are currently approved by the FDA are considered safe for use in magnetic resonance imaging environments. However, 2 previously approved devices–the OmniPhase and the DuraPhase penile prostheses–are not considered safe in this environment. Other surgical procedures–including venous ligation to limit penile venous outflow and penile revascularization procedures–are rarely successful and are not recommended.19 These surgeries are only indicated when a patient demonstrates recent-onset ED and an occlusive lesion seen on angiogram or magnetic resonance angiography and should be performed only in centers of excellence for ED.

Several pathways have been described to explain how information travels from the hypothalamus to the sacral autonomic centers. One pathway travels from the dorsomedial hypothalamus through the dorsal and central gray matter, descends to the locus ceruleus, and projects ventrally in the mesencephalic reticular formation. Input from the brain is conveyed through the dorsal spinal columns to the thoracolumbar and sacral autonomic nuclei.


Total levels of testosterone in the body are 264 to 916 ng/dL in men age 19 to 39 years,[161] while mean testosterone levels in adult men have been reported as 630 ng/dL.[162] Levels of testosterone in men decline with age.[161] In women, mean levels of total testosterone have been reported to be 32.6 ng/dL.[163][164] In women with hyperandrogenism, mean levels of total testosterone have been reported to be 62.1 ng/dL.[163][164]
Findings that improvements in serum glucose, serum insulin, insulin resistance or glycemic control, in men treated with testosterone are accompanied by reduced measures of central obesity, are in line with other studies showing a specific effect of testosterone in reducing central or visceral obesity (Rebuffe-Scrive et al 1991; Marin, Holmang et al 1992). Furthermore, studies that have shown neutral effects of testosterone on glucose metabolism have not measured (Corrales et al 2004), or shown neutral effects (Lee et al 2005) (Tripathy et al 1998; Bhasin et al 2005) on central obesity. Given the known association of visceral obesity with insulin resistance, it is possible that testosterone treatment of hypogonadal men acts to improve insulin resistance and diabetes through an effect in reducing central obesity. This effect can be explained by the action of testosterone in inhibiting lipoprotein lipase and thereby reducing triglyceride uptake into adipocytes (Sorva et al 1988), an action which seems to occur preferentially in visceral fat (Marin et al 1995; Marin et al 1996). Visceral fat is thought to be more responsive to hormonal changes due to a greater concentration of androgen receptors and increased vascularity compared with subcutaneous fat (Bjorntorp 1996). Further explanation of the links between hypogonadism and obesity is offered by the hypogonadal-obesity-adipocytokine cycle hypothesis (see Figure 1). In this model, increases in body fat lead to increases in aromatase levels, in addition to insulin resistance, adverse lipid profiles and increased leptin levels. Increased action of aromatase in metabolizing testosterone to estrogen, reduces testosterone levels which induces further accumulation of visceral fat. Higher leptin levels and possibly other factors, act at the pituitary to suppress gonadotrophin release and exacerbate hypogonadism (Cohen 1999; Kapoor et al 2005). Leptin has also been shown to reduce testosterone secretion from rodent testes in vitro (Tena-Sempere et al 1999). A full review of the relationship between testosterone, insulin resistance and diabetes can be found elsewhere (Kapoor et al 2005; Jones 2007).

Low testosterone levels can cause mood disturbances, increased body fat, loss of muscle tone, inadequate erections and poor sexual performance, osteoporosis, difficulty with concentration, memory loss and sleep difficulties. Current research suggests that this effect occurs in only a minority (about 2%) of ageing men. However, there is a lot of research currently in progress to find out more about the effects of testosterone in older men and also whether the use of testosterone replacement therapy would have any benefits.


Impotence is a common problem among men and is characterized by the consistent inability to sustain an erection sufficient for sexual intercourse or the inability to achieve ejaculation, or both. Erectile dysfunction can vary. It can involve a total inability to achieve an erection or ejaculation, an inconsistent ability to do so, or a tendency to sustain only very brief erections.
Erectile dysfunction, also known as ED or impotence, is the inability to attain or maintain an erection of the penis adequate for the sexual satisfaction of both partners. It can be devastating to the self-esteem of a man and of his partner. As many as 30 million American men are afflicted on a continuing basis, and transient episodes affect nearly all adult males. But nearly all men who seek treatment find some measure of relief.
Think of erectile dysfunction as your body’s “check engine light.” The blood vessels in the penis are smaller than other parts of the body, so underlying conditions like blocked arteries, heart disease, or high blood pressure usually show up as ED before something more serious like a heart attack or stroke. ED is your body’s way of saying, “Something is wrong.” And the list of things that cause erectile dysfunction can include:
Before assessing the evidence of testosterone’s action in the aging male it is important to note certain methodological considerations which are common to the interpretation of any clinical trial of testosterone replacement. Many interventional trials of the effects of testosterone on human health and disease have been conducted. There is considerable heterogenicity in terms of study design and these differences have a potential to significantly affect the results seen in various studies. Gonadal status at baseline and the testosterone level produced by testosterone treatment in the study are of particular importance because the effects of altering testosterone from subphysiological to physiological levels may be different from those of altering physiological levels to supraphysiological. Another important factor is the length of treatment. Randomised controlled trials of testosterone have ranged from one to thirty-six months in duration (Isidori et al 2005) although some uncontrolled studies have lasted up to 42 months. Many effects of testosterone are thought to fully develop in the first few months of treatment but effects on bone, for example, have been shown to continue over two years or more (Snyder et al 2000; Wang, Cunningham et al 2004).
Cross-sectional studies have found a positive association between serum testosterone and some measures of cognitive ability in men (Barrett-Connor, Goodman-Gruen et al 1999; Yaffe et al 2002). Longitudinal studies have found that free testosterone levels correlate positively with future cognitive abilities and reduced rate of cognitive decline (Moffat et al 2002) and that, compared with controls, testosterone levels are reduced in men with Alzheimer’s disease at least 10 years prior to diagnosis (Moffat et al 2004). Studies of the effects of induced androgen deficiency in patients with prostate cancer have shown that profoundly lowering testosterone leads to worsening cognitive functions (Almeida et al 2004; Salminen et al 2004) and increased levels of serum amyloid (Gandy et al 2001; Almeida et al 2004), which is central to the pathogenesis of Alzheimer’s disease (Parihar and Hemnani 2004). Furthermore, testosterone reduces amyloid-induced hippocampal neurotoxity in vitro (Pike 2001) as well as exhibiting other neuroprotective effects (Pouliot et al 1996). The epidemiological and experimental data propose a potential role of testosterone in protecting cognitive function and preventing Alzheimer’s disease.
Important future developments will include selective androgen receptor modulators (SARMs). These drugs will be able to produce isolated effects of testosterone at androgen receptors. They are likely to become useful clinical drugs, but their initial worth may lie in facilitating research into the relative importance of testosterone’s action at the androgen receptor compared to at other sites or after conversion to other hormones. Testosterone will remain the treatment of choice for late onset hypogonadism for some time to come.

Miscellaneous: Sleep: (REM sleep) increases nocturnal testosterone levels.[138] Behavior: Dominance challenges can, in some cases, stimulate increased testosterone release in men.[139] Drugs: Natural or man-made antiandrogens including spearmint tea reduce testosterone levels.[140][141][142] Licorice can decrease the production of testosterone and this effect is greater in females.[143]
Exercise is the original testosterone booster, and it’s one of the most powerful full-body hacks around. Men see a sharp increase in both testosterone and human growth hormone (HGH) after lifting weights, and the boost is greater with shorter rest time between sets (1 minute rest outperforms 3 minutes rest) [9]. With the shorter rest time, women also get a large boost in HGH.

It may also become a treatment for anemia, bone density and strength problems. In a 2017 study published in the journal of the American Medical Association (JAMA), testosterone treatments corrected anemia in older men with low testosterone levels better than a placebo. Another 2017 study published in JAMA found that older men with low testosterone had increased bone strength and density after treatment when compared with a placebo. 
×