Epidemiological studies have also assessed links between serum testosterone and non-coronary atherosclerosis. A study of over 1000 people aged 55 years and over found an inverse correlation between serum total and bioavailable testosterone and the amount of aortic atherosclerosis in men, as assessed by radiological methods (Hak et al 2002). Increased intima-media thickness (IMT) is an early sign of atherosclerosis and has also been shown to predict cardiovascular mortality (Murakami et al 2005). Cross-sectional studies have found that testosterone levels are negatively correlated with carotid IMT in independently living men aged 74–93 years (van den Beld et al 2003), diabetic men (Fukui et al 2003) and young obese men (De Pergola et al 2003). A 4-year follow up study of the latter population showed that free testosterone was also inversely correlated with the rate of increase of IMT (Muller et al 2004).
In one study, 9.6% reported ‘occasional’ erectile dysfunction, 8.9% reported erectile dysfunction occurring ‘often’, and 18.6% reported erectile dysfunction occurring ‘all the time’. Of these, only 11.6% had received treatment.In another study, only 14.1% of men reported that they had received treatment, despite experiencing erectile dysfunction for longer than 12 months.

Testosterone was first used as a clinical drug as early as 1937, but with little understanding of its mechanisms. The hormone is now widely prescribed to men whose bodies naturally produce low levels. But the levels at which testosterone deficiency become medically relevant still aren’t well understood. Normal testosterone production varies widely in men, so it’s difficult to know what levels have medical significance. The hormone’s mechanisms of action are also unclear.


Changes in body composition are seen with aging. In general terms, aging males are prone to loss of muscle mass and a gain in fat mass, especially in the form of visceral or central fat. An epidemiological study of community dwelling men aged between 24 and 85 years has confirmed that total and free testosterone levels are inversely correlated with waist circumference and that testosterone levels are specifically related to this measure of central obesity rather than general obesity (Svartberg, von Muhlen, Sundsfjord et al 2004). Prospective studies show that testosterone levels predict future development of central obesity (Khaw and Barrett-Connor 1992; Tsai et al 2000). Reductions in free testosterone also correlate with age related declines in fat free mass (muscle mass) and muscle strength (Baumgartner et al 1999; Roy et al 2002). Studies in hypogonadal men confirm an increase in fat mass and decrease in fat free mass versus comparable eugonadal men (Katznelson et al 1998). Taken together, the epidemiological data suggest that a hypogonadal state promotes loss of muscle mass and a gain in fat mass, particularly visceral fat and therefore mimics the changes of ‘normal’ aging.
Falling in love decreases men's testosterone levels while increasing women's testosterone levels. There has been speculation that these changes in testosterone result in the temporary reduction of differences in behavior between the sexes.[53] However, it is suggested that after the "honeymoon phase" ends—about four years into a relationship—this change in testosterone levels is no longer apparent.[53] Men who produce less testosterone are more likely to be in a relationship[54] or married,[55] and men who produce more testosterone are more likely to divorce;[55] however, causality cannot be determined in this correlation. Marriage or commitment could cause a decrease in testosterone levels.[56] Single men who have not had relationship experience have lower testosterone levels than single men with experience. It is suggested that these single men with prior experience are in a more competitive state than their non-experienced counterparts.[57] Married men who engage in bond-maintenance activities such as spending the day with their spouse/and or child have no different testosterone levels compared to times when they do not engage in such activities. Collectively, these results suggest that the presence of competitive activities rather than bond-maintenance activities are more relevant to changes in testosterone levels.[58]
There have been case reports of development of prostate cancer in patients during treatment with testosterone, including one case series of twenty patients (Gaylis et al 2005). It is not known whether this reflects an increase in incidence, as prostate cancer is very common and because the monitoring for cancer in patients treated with testosterone is greater. Randomized controlled trials of testosterone treatment have found a low incidence of prostate cancer and they do not provide evidence of a link between testosterone treatment and the development of prostate cancer (Rhoden and Morgentaler 2004). More large scale clinical trials of longer durations of testosterone replacement are required to confirm that testosterone treatment does not cause prostate cancer. Overall, it is not known whether testosterone treatment of aging males with hypogonadism increases the risk of prostate cancer, but monitoring for the condition is clearly vital. This should take the form of PSA blood test and rectal examination every three months for the first year of treatment and yearly thereafter (Nieschlag et al 2005). Age adjusted PSA reference ranges should be used to identify men who require further assessment. The concept of PSA velocity is also important and refers to the rate of increase in PSA per year. Patients with abnormal rectal examination suggestive of prostate cancer, PSA above the age specific reference range or a PSA velocity greater than 0.75 ng/ml/yr should be referred to a urologist for consideration of prostate biopsy.
At the present time, it is suggested that androgen replacement should take the form of natural testosterone. Some of the effects of testosterone are mediated after conversion to estrogen or dihydrotestosterone by the enzymes aromatase and 5a-reductase enzymes respectively. Other effects occur independently of the traditional action of testosterone via the classical androgen receptor- for example, its action as a vasodilator via a cell membrane action as described previously. It is therefore important that the androgen used to treat hypogonadism is amenable to the action of these metabolizing enzymes and can also mediate the non-androgen receptor actions of testosterone. Use of natural testosterone ensures this and reduces the chance of non-testosterone mediated adverse effects. There are now a number of testosterone preparations which can meet these recommendations and the main factor in deciding between them is patient choice.
Testosterone is a steroid from the androstane class containing a keto and hydroxyl groups at the three and seventeen positions respectively. It is biosynthesized in several steps from cholesterol and is converted in the liver to inactive metabolites.[5] It exerts its action through binding to and activation of the androgen receptor.[5] In humans and most other vertebrates, testosterone is secreted primarily by the testicles of males and, to a lesser extent, the ovaries of females. On average, in adult males, levels of testosterone are about 7 to 8 times as great as in adult females.[6] As the metabolism of testosterone in males is greater, the daily production is about 20 times greater in men.[7][8] Females are also more sensitive to the hormone.[9]
Associated morbidity may include various other male sexual dysfunctions, such as premature (early) ejaculation and male hypoactive sexual desire disorder. The NHSLS found that 28.5% of men aged 18-59 years reported premature ejaculation, and 15.8% lacked sexual interest during the past year. An additional 17% reported anxiety about sexual performance, and 8.1% had a lack of pleasure in sex. [51]

In addition to conjugation and the 17-ketosteroid pathway, testosterone can also be hydroxylated and oxidized in the liver by cytochrome P450 enzymes, including CYP3A4, CYP3A5, CYP2C9, CYP2C19, and CYP2D6.[151] 6β-Hydroxylation and to a lesser extent 16β-hydroxylation are the major transformations.[151] The 6β-hydroxylation of testosterone is catalyzed mainly by CYP3A4 and to a lesser extent CYP3A5 and is responsible for 75 to 80% of cytochrome P450-mediated testosterone metabolism.[151] In addition to 6β- and 16β-hydroxytestosterone, 1β-, 2α/β-, 11β-, and 15β-hydroxytestosterone are also formed as minor metabolites.[151][152] Certain cytochrome P450 enzymes such as CYP2C9 and CYP2C19 can also oxidize testosterone at the C17 position to form androstenedione.[151]


This is one of many types of constricting devices placed at the base of the penis to diminish venous outflow and improve the quality and duration of the erection. This is particularly useful in men who have a venous leak and are only able to obtain partial erections that they are unable to maintain. These constricting devices may be used in conjunction with oral agents, injection therapy, and vacuum devices.

Testosterone is a steroid from the androstane class containing a keto and hydroxyl groups at the three and seventeen positions respectively. It is biosynthesized in several steps from cholesterol and is converted in the liver to inactive metabolites.[5] It exerts its action through binding to and activation of the androgen receptor.[5] In humans and most other vertebrates, testosterone is secreted primarily by the testicles of males and, to a lesser extent, the ovaries of females. On average, in adult males, levels of testosterone are about 7 to 8 times as great as in adult females.[6] As the metabolism of testosterone in males is greater, the daily production is about 20 times greater in men.[7][8] Females are also more sensitive to the hormone.[9]
Erectile dysfunction - (ED) or impotence is sexual dysfunction characterized by the inability to develop or maintain an erection of the penis during sexual activity. A penile erection is the hydraulic effect of blood entering and being retained in sponge-like bodies within the penis. The process is most often initiated as a result of sexual arousal, when signals are transmitted from the brain to nerves in the penis.
At the present time, it is suggested that androgen replacement should take the form of natural testosterone. Some of the effects of testosterone are mediated after conversion to estrogen or dihydrotestosterone by the enzymes aromatase and 5a-reductase enzymes respectively. Other effects occur independently of the traditional action of testosterone via the classical androgen receptor- for example, its action as a vasodilator via a cell membrane action as described previously. It is therefore important that the androgen used to treat hypogonadism is amenable to the action of these metabolizing enzymes and can also mediate the non-androgen receptor actions of testosterone. Use of natural testosterone ensures this and reduces the chance of non-testosterone mediated adverse effects. There are now a number of testosterone preparations which can meet these recommendations and the main factor in deciding between them is patient choice.
Important future developments will include selective androgen receptor modulators (SARMs). These drugs will be able to produce isolated effects of testosterone at androgen receptors. They are likely to become useful clinical drugs, but their initial worth may lie in facilitating research into the relative importance of testosterone’s action at the androgen receptor compared to at other sites or after conversion to other hormones. Testosterone will remain the treatment of choice for late onset hypogonadism for some time to come.
Can apple cider vinegar treat erectile dysfunction? Apple cider vinegar is thought to have many health benefits, but can it help treat erectile dysfunction (ED)? ED can result from cardiovascular problems, diabetes, and other factors. Apple cider vinegar may help improve symptoms of conditions related to ED. Find out how it may help, and how to use it safely. Read now
^ Butenandt A, Hanisch G (1935). "Umwandlung des Dehydroandrosterons in Androstendiol und Testosterone; ein Weg zur Darstellung des Testosterons aus Cholestrin" [About Testosterone. Conversion of Dehydro-androsterons into androstendiol and testosterone; a way for the structure assignment of testosterone from cholesterol]. Hoppe-Seyler's Z Physiol Chem (in German). 237 (2): 89–97. doi:10.1515/bchm2.1935.237.1-3.89.

Before assessing the evidence of testosterone’s action in the aging male it is important to note certain methodological considerations which are common to the interpretation of any clinical trial of testosterone replacement. Many interventional trials of the effects of testosterone on human health and disease have been conducted. There is considerable heterogenicity in terms of study design and these differences have a potential to significantly affect the results seen in various studies. Gonadal status at baseline and the testosterone level produced by testosterone treatment in the study are of particular importance because the effects of altering testosterone from subphysiological to physiological levels may be different from those of altering physiological levels to supraphysiological. Another important factor is the length of treatment. Randomised controlled trials of testosterone have ranged from one to thirty-six months in duration (Isidori et al 2005) although some uncontrolled studies have lasted up to 42 months. Many effects of testosterone are thought to fully develop in the first few months of treatment but effects on bone, for example, have been shown to continue over two years or more (Snyder et al 2000; Wang, Cunningham et al 2004).
Patients at high cardiovascular risk should not be treated for ED until their cardiac condition is stabilize. These conditions include unstable or refractory angina, myocardial infarction or cerebrovascular accident within the past 2 weeks, uncontrolled hypertension, New York Heart Association (NYHA) Functional Classification III-IV congestive heart failure, high-risk arrhythmias, hypertrophic obstructive cardiomyopathies, and moderate-to-severe valvular disease.25 This class of drugs is also contraindicated in patients who use nitroglycerin or nitrate-containing compounds.26, 27
In a recent study of male workers, men with low testosterone levels had an increased chance of severe erectile dysfunction (Kratzik et al 2005), although such a link had not been found previously (Rhoden et al 2002). Certainly erectile dysfunction is considered part of the clinical syndrome of hypogonadism, and questions regarding erectile dysfunction form part of the clinical assessment of patients with hypogonadism (Morley et al 2000; Moore et al 2004).
×