The effect excess testosterone has on the body depends on both age and sex. It is unlikely that adult men will develop a disorder in which they produce too much testosterone and it is often difficult to spot that an adult male has too much testosterone. More obviously, young children with too much testosterone may enter a false growth spurt and show signs of early puberty and young girls may experience abnormal changes to their genitalia. In both males and females, too much testosterone can lead to precocious puberty and result in infertility. 
Talk with your doctor before trying supplements for ED. They can contain 10 or more ingredients and may complicate other health conditions. Asian ginseng and ginkgo biloba (seen here) are popular, but there isn't a lot of good research on their effectiveness. Some men find that taking a DHEA supplement improves their ability to have an erection. Unfortunately, the long-term safety of DHEA supplements is unknown. Most doctors do not recommend using it.
The aim of treatment for hypogonadism is to normalize serum testosterone levels and abolish symptoms or pathological states that are due to low testosterone levels. The exact target testosterone level is a matter of debate, but current recommendations advocate levels in the mid-lower normal adult range (Nieschlag et al 2005). Truly physiological testosterone replacement would require replication of the diurnal rhythm of serum testosterone levels, but there is no current evidence that this is beneficial (Nieschlag et al 2005).

In males, testosterone is synthesized primarily in Leydig cells. The number of Leydig cells in turn is regulated by luteinizing hormone (LH) and follicle-stimulating hormone (FSH). In addition, the amount of testosterone produced by existing Leydig cells is under the control of LH, which regulates the expression of 17β-hydroxysteroid dehydrogenase.[124]
When many people think of someone with a high level of testosterone, they may picture a man loaded with strength, sexual prowess, and machismo. But while high-T has been correlated with all those things, it’s also been correlated with aggression, sexual misconduct, and violence. One of testosterone’s most common uses—as a performance-enhancing steroid—illustrates both sides of the hormone. Injecting steroids can be a quick way for athletes to dramatically improve performance, but the side effects can also be extreme, and can include excessive body hair growth, sexual dysfunction, and the hard-to-corral anger known as “roid rage.”
Patients with both ED and cardiovascular disease who receive treatment with an oral PDE5 inhibitor require education regarding what to do if anginal episodes develop while the drug is in their system. Such education includes stressing the importance of alerting emergency care providers to the presence of the drug so that nitrate treatment is avoided.

Testosterone is most commonly associated with sex drive in men. It also affects mental health, bone and muscle mass, fat storage, and red blood cell production. Abnormally low or high levels can affect a man’s mental and physical health. Your doctor can check your testosterone levels with a simple blood test. Testosterone therapy is available to treat men with low levels of testosterone. If you have low T, ask your doctor if this type of therapy might benefit you.
Instead of the hesitation with which he had accosted the cardinal a quarter of an hour before, there might be read in the eyes of the young king that will against which a struggle might be maintained, and which might be crushed by its own impotence, but which, at least, would preserve, like a wound in the depth of the heart, the remembrance of its defeat.
^ Mehta PH, Jones AC, Josephs RA (Jun 2008). "The social endocrinology of dominance: basal testosterone predicts cortisol changes and behavior following victory and defeat" (PDF). Journal of Personality and Social Psychology. 94 (6): 1078–93. CiteSeerX 10.1.1.336.2502. doi:10.1037/0022-3514.94.6.1078. PMID 18505319. Archived from the original (PDF) on April 19, 2009.

Obesity and metabolic syndrome can cause changes in blood pressure, body composition, and cholesterol which may lead to ED. Other conditions that may contribute to erectile dysfunction include Parkinson’s, multiple sclerosis, Peyronie’s disease, sleep disorders, alcoholism, and drug abuse. Taking certain medications can also increase your risk for ED.

A large number of trials have demonstrated a positive effect of testosterone treatment on bone mineral density (Katznelson et al 1996; Behre et al 1997; Leifke et al 1998; Snyder et al 2000; Zacharin et al 2003; Wang, Cunningham et al 2004; Aminorroaya et al 2005; Benito et al 2005) and bone architecture (Benito et al 2005). These effects are often more impressive in longer trials, which have shown that adequate replacement will lead to near normal bone density but that the full effects may take two years or more (Snyder et al 2000; Wang, Cunningham et al 2004; Aminorroaya et al 2005). Three randomized placebo-controlled trials of testosterone treatment in aging males have been conducted (Snyder et al 1999; Kenny et al 2001; Amory et al 2004). One of these studies concerned men with a mean age of 71 years with two serum testosterone levels less than 12.1nmol/l. After 36 months of intramuscular testosterone treatment or placebo, there were significant increases in vertebral and hip bone mineral density. In this study, there was also a significant decrease in the bone resorption marker urinary deoxypyridinoline with testosterone treatment (Amory et al 2004). The second study contained men with low bioavailable testosterone levels and an average age of 76 years. Testosterone treatment in the form of transdermal patches was given for 1 year. During this trial there was a significant preservation of hip bone mineral density with testosterone treatment but testosterone had no effect on bone mineral density at other sites including the vertebrae. There were no significant alterations in bone turnover markers during testosterone treatment (Kenny et al 2001). The remaining study contained men of average age 73 years. Men were eligible for the study if their serum total testosterone levels were less than 16.5 nmol/L, meaning that the study contained men who would usually be considered eugonadal. The beneficial effects of testosterone on bone density were confined to the men who had lower serum testosterone levels at baseline and were seen only in the vertebrae. There were no significant changes in bone turnover markers. Testosterone in the trial was given via scrotal patches for a 36 month duration (Snyder et al 1999). A recent meta-analysis of the effects on bone density of testosterone treatment in men included data from these studies and two other randomized controlled trials. The findings were that testosterone produces a significant increase of 2.7% in the bone mineral density at the lumber spine but no overall change at the hip (Isidori et al 2005). These results from randomized controlled trials in aging men show much smaller benefits of testosterone treatment on bone density than have been seen in other trials. This could be due to the trials including patients who are not hypogonadal and being too short to allow for the maximal effects of testosterone. The meta-analysis also assessed the data concerning changes of bone formation and resorption markers during testosterone treatment. There was a significant decrease in bone resorption markers but no change in markers of bone formation suggesting that reduction of bone resorption may be the primary mode of action of testosterone in improving bone density (Isidori et al 2005).

A large number of trials have demonstrated a positive effect of testosterone treatment on bone mineral density (Katznelson et al 1996; Behre et al 1997; Leifke et al 1998; Snyder et al 2000; Zacharin et al 2003; Wang, Cunningham et al 2004; Aminorroaya et al 2005; Benito et al 2005) and bone architecture (Benito et al 2005). These effects are often more impressive in longer trials, which have shown that adequate replacement will lead to near normal bone density but that the full effects may take two years or more (Snyder et al 2000; Wang, Cunningham et al 2004; Aminorroaya et al 2005). Three randomized placebo-controlled trials of testosterone treatment in aging males have been conducted (Snyder et al 1999; Kenny et al 2001; Amory et al 2004). One of these studies concerned men with a mean age of 71 years with two serum testosterone levels less than 12.1nmol/l. After 36 months of intramuscular testosterone treatment or placebo, there were significant increases in vertebral and hip bone mineral density. In this study, there was also a significant decrease in the bone resorption marker urinary deoxypyridinoline with testosterone treatment (Amory et al 2004). The second study contained men with low bioavailable testosterone levels and an average age of 76 years. Testosterone treatment in the form of transdermal patches was given for 1 year. During this trial there was a significant preservation of hip bone mineral density with testosterone treatment but testosterone had no effect on bone mineral density at other sites including the vertebrae. There were no significant alterations in bone turnover markers during testosterone treatment (Kenny et al 2001). The remaining study contained men of average age 73 years. Men were eligible for the study if their serum total testosterone levels were less than 16.5 nmol/L, meaning that the study contained men who would usually be considered eugonadal. The beneficial effects of testosterone on bone density were confined to the men who had lower serum testosterone levels at baseline and were seen only in the vertebrae. There were no significant changes in bone turnover markers. Testosterone in the trial was given via scrotal patches for a 36 month duration (Snyder et al 1999). A recent meta-analysis of the effects on bone density of testosterone treatment in men included data from these studies and two other randomized controlled trials. The findings were that testosterone produces a significant increase of 2.7% in the bone mineral density at the lumber spine but no overall change at the hip (Isidori et al 2005). These results from randomized controlled trials in aging men show much smaller benefits of testosterone treatment on bone density than have been seen in other trials. This could be due to the trials including patients who are not hypogonadal and being too short to allow for the maximal effects of testosterone. The meta-analysis also assessed the data concerning changes of bone formation and resorption markers during testosterone treatment. There was a significant decrease in bone resorption markers but no change in markers of bone formation suggesting that reduction of bone resorption may be the primary mode of action of testosterone in improving bone density (Isidori et al 2005).
Vacuum devices for ED, also called pumps, offer an alternative to medication. The penis is placed inside a cylinder. A pump draws air out of the cylinder, creating a partial vacuum around the penis. This causes it to fill with blood, leading to an erection. An elastic band worn around the base of the penis maintains the erection during intercourse.
Testosterone was first used as a clinical drug as early as 1937, but with little understanding of its mechanisms. The hormone is now widely prescribed to men whose bodies naturally produce low levels. But the levels at which testosterone deficiency become medically relevant still aren’t well understood. Normal testosterone production varies widely in men, so it’s difficult to know what levels have medical significance. The hormone’s mechanisms of action are also unclear.

Erectile dysfunction - (ED) or impotence is sexual dysfunction characterized by the inability to develop or maintain an erection of the penis during sexual activity. A penile erection is the hydraulic effect of blood entering and being retained in sponge-like bodies within the penis. The process is most often initiated as a result of sexual arousal, when signals are transmitted from the brain to nerves in the penis. 

Epidemiological data has associated low testosterone levels with atherogenic lipid parameters, including lower HDL cholesterol (Lichtenstein et al 1987; Haffner et al 1993; Van Pottelbergh et al 2003) and higher total cholesterol (Haffner et al 1993; Van Pottelbergh et al 2003), LDL cholesterol (Haffner et al 1993) and triglyceride levels (Lichtenstein et al 1987; Haffner et al 1993). Furthermore, these relationships are independent of other factors such as age, obesity and glucose levels (Haffner et al 1993; Van Pottelbergh et al 2003). Interventional trails of testosterone replacement have shown that treatment causes a decrease in total cholesterol. A recent meta-analysis of 17 randomized controlled trials confirmed this and found that the magnitude of changes was larger in trials of patients with lower baseline testosterone levels (Isidori et al 2005). The same meta-analysis found no significant overall change in LDL or HDL cholesterol levels but in trials with baseline testosterone levels greater than 10 nmol/l, there was a small reduction in HDL cholesterol with testosterone treatment.
Most studies support a link between adult criminality and testosterone, although the relationship is modest if examined separately for each sex. Nearly all studies of juvenile delinquency and testosterone are not significant. Most studies have also found testosterone to be associated with behaviors or personality traits linked with criminality such as antisocial behavior and alcoholism. Many studies have also been done on the relationship between more general aggressive behavior/feelings and testosterone. About half the studies have found a relationship and about half no relationship.[66]
It is normal for a man to have five to six erections during sleep, especially during rapid eye movement (REM). Their absence may indicate a problem with nerve function or blood supply in the penis. There are two methods for measuring changes in penile rigidity and circumference during nocturnal erection: snap gauge and strain gauge. A significant proportion of men who have no sexual dysfunction nonetheless do not have regular nocturnal erections.
Longitudinal studies in male aging studies have shown that serum testosterone levels decline with age (Harman et al 2001; Feldman et al 2002). Total testosterone levels fall at an average of 1.6% per year whilst free and bioavailable levels fall by 2%–3% per year. The reduction in free and bioavailable testosterone levels is larger because aging is also associated with increases in SHBG levels (Feldman et al 2002). Cross-sectional data supports these trends but has usually shown smaller reductions in testosterone levels with aging (Feldman et al 2002). This is likely to reflect strict entry criteria to cross-sectional studies so that young healthy men are compared to older healthy men. During the course of longitudinal studies some men may develop pathologies which accentuate decreases in testosterone levels.
^ Jump up to: a b Sapienza P, Zingales L, Maestripieri D (September 2009). "Gender differences in financial risk aversion and career choices are affected by testosterone". Proceedings of the National Academy of Sciences of the United States of America. 106 (36): 15268–73. Bibcode:2009PNAS..10615268S. doi:10.1073/pnas.0907352106. PMC 2741240. PMID 19706398.

Late onset hypogonadism reflects a particular pathophysiology and it may not be appropriate to extrapolate results from studies concerning the effects of testosterone in treating hypogonadism of other etiology to aging males. For this reason, the age of men treated in clinical trials is certainly relevant. Other important factors include patient comorbidities and the preparation and route of testosterone replacement used in the study, which can affect the production of estrogen and dihydrotestosterone, testosterone’s active metabolites


It appears that testosterone has NOS-independent pathways as well. In one study, castrated rats were implanted with testosterone pellets and then divided into a group that received an NOS inhibitor (L-nitro-L-arginine methyl ester [L-NAME]) and a control group that received no enzyme. [24] The castrated rats that were given testosterone pellets and L-NAME still had partial erections, a result suggesting the presence of a pathway independent of NOS activity.
The normal development of the prostate gland is dependent on the action of testosterone via the androgen receptor, and abnormal biosynthesis of the hormone or inactivating mutations of the androgen receptor are associated with a rudimentary prostate gland. Testosterone also requires conversion to dihydrotestosterone in the prostate gland for full activity. In view of this link between testosterone and prostate development, it is important to consider the impact that testosterone replacement may have on the prevalence and morbidity associated with benign prostatic hypertrophy (BPH) and prostate cancer, which are the common conditions related to pathological growth of the prostate gland.
Free testosterone (T) is transported into the cytoplasm of target tissue cells, where it can bind to the androgen receptor, or can be reduced to 5α-dihydrotestosterone (DHT) by the cytoplasmic enzyme 5α-reductase. DHT binds to the same androgen receptor even more strongly than testosterone, so that its androgenic potency is about 5 times that of T.[110] The T-receptor or DHT-receptor complex undergoes a structural change that allows it to move into the cell nucleus and bind directly to specific nucleotide sequences of the chromosomal DNA. The areas of binding are called hormone response elements (HREs), and influence transcriptional activity of certain genes, producing the androgen effects.
The changes in average serum testosterone levels with aging mean that the proportion of men fulfilling a biochemically defined diagnosis of hypogonadism increases with aging. Twenty percent of men aged over 60 have total testosterone levels below the normal range and the figure rises to 50% in those aged over 80. The figures concerning free testosterone are even higher as would be expected in view of the concurrent decrease in SHBG levels (Harman et al 2001).

Best of all? It's easy. "Low T Center is set up so men can walk in, take a simple blood test, and know within 30 minutes whether or not they are a candidate for testosterone replacement therapy, or TRT. Men who qualify get their first injection on the spot, and will continue to come in three times per month to receive a quick testosterone injection."
×