Causes of impotence are many and include heart disease, high cholesterol, high blood pressure, obesity, metabolic syndrome, Parkinson's disease, Peyronie's disease, substance abuse, sleep disorders, BPH treatments, relationship problems, blood vessel diseases (such as peripheral vascular disease and others), systemic disease, hormonal imbalance, and medications (such as blood pressure and heart medications).
Then you have to be able to make the right diagnosis. What is the basis for their erectile dysfunction? Is it psychogenic? Is it some sort of neurological or blood vessel or hormonal issue? So you have to make a diagnosis. You have to be able to make an assessment. And then only after those things are done, then you start to think about medications.

Findings that improvements in serum glucose, serum insulin, insulin resistance or glycemic control, in men treated with testosterone are accompanied by reduced measures of central obesity, are in line with other studies showing a specific effect of testosterone in reducing central or visceral obesity (Rebuffe-Scrive et al 1991; Marin, Holmang et al 1992). Furthermore, studies that have shown neutral effects of testosterone on glucose metabolism have not measured (Corrales et al 2004), or shown neutral effects (Lee et al 2005) (Tripathy et al 1998; Bhasin et al 2005) on central obesity. Given the known association of visceral obesity with insulin resistance, it is possible that testosterone treatment of hypogonadal men acts to improve insulin resistance and diabetes through an effect in reducing central obesity. This effect can be explained by the action of testosterone in inhibiting lipoprotein lipase and thereby reducing triglyceride uptake into adipocytes (Sorva et al 1988), an action which seems to occur preferentially in visceral fat (Marin et al 1995; Marin et al 1996). Visceral fat is thought to be more responsive to hormonal changes due to a greater concentration of androgen receptors and increased vascularity compared with subcutaneous fat (Bjorntorp 1996). Further explanation of the links between hypogonadism and obesity is offered by the hypogonadal-obesity-adipocytokine cycle hypothesis (see Figure 1). In this model, increases in body fat lead to increases in aromatase levels, in addition to insulin resistance, adverse lipid profiles and increased leptin levels. Increased action of aromatase in metabolizing testosterone to estrogen, reduces testosterone levels which induces further accumulation of visceral fat. Higher leptin levels and possibly other factors, act at the pituitary to suppress gonadotrophin release and exacerbate hypogonadism (Cohen 1999; Kapoor et al 2005). Leptin has also been shown to reduce testosterone secretion from rodent testes in vitro (Tena-Sempere et al 1999). A full review of the relationship between testosterone, insulin resistance and diabetes can be found elsewhere (Kapoor et al 2005; Jones 2007).
Drugs.com provides accurate and independent information on more than 24,000 prescription drugs, over-the-counter medicines and natural products. This material is provided for educational purposes only and is not intended for medical advice, diagnosis or treatment. Data sources include IBM Watson Micromedex (updated Jan 9th, 2019), Cerner Multum™ (updated Jan 14th, 2019), Wolters Kluwer™ (updated Jan 7th, 2019) and others. To view content sources and attributions, please refer to our editorial policy.

When I first started TRT, my physician prescribed a cream that you rub into your skin. The cream version of TRT is not too convenient, because if someone touches you while you have the cream on, the testosterone can rub off on him/her. This can be really bad around kids or pregnant women. If you’re sleeping next to someone, the cream can get on the sheets and transfer over that way, too. The cream can be annoying, but it works. There’s also a gel version called AndroGel; I skipped it because it doesn’t absorb as well as the cream does.
×