Diabetes is a well-recognized risk factor for ED. A systematic review and meta-analysis found that the prevalence of ED was 37.5% in type 1 diabetes, 66.3% in type 2 diabetes, and 52.5% in diabetes overall—a rate approximately 3.5 times higher than that in controls. [39]  The etiology of ED in diabetic men probably involves both vascular and neurogenic mechanisms. Evidence indicates that establishing good glycemic control can minimize this risk.

The laboratory results should be discussed with the patient and, if possible, with his sexual partner. This educational process allows a review of the basic aspects of the anatomy and physiology of the sexual response and an explanation of the possible etiology and associated risk factors (eg, smoking and the use of various medications). Treatment options and their benefits and risks should be discussed. This type of dialogue allows the patient and physician to cooperate in developing an optimal management strategy.


The reliable measurement of serum free testosterone requires equilibrium dialysis. This is not appropriate for clinical use as it is very time consuming and therefore expensive. The amount of bioavailable testosterone can be measured as a percentage of the total testosterone after precipitation of the SHBG bound fraction using ammonium sulphate. The bioavailable testosterone is then calculated from the total testosterone level. This method has an excellent correlation with free testosterone (Tremblay and Dube 1974) but is not widely available for clinical use. In most clinical situations the available tests are total testosterone and SHBG which are both easily and reliably measured. Total testosterone is appropriate for the diagnosis of overt male hypogonadism where testosterone levels are very low and also in excluding hypogonadism in patients with normal/high-normal testosterone levels. With increasing age, a greater number of men have total testosterone levels just below the normal range or in the low-normal range. In these patients total testosterone can be an unreliable indicator of hypogonadal status. There are a number of formulae that calculate an estimated bioavailable or free testosterone level using the SHBG and total testosterone levels. Some of these have been shown to correlate well with laboratory measures and there is evidence that they more reliably indicate hypogonadism than total testosterone in cases of borderline biochemical hypogonadism (Vermeulen et al 1971; Morris et al 2004). It is important that such tests are validated for use in patient populations relevant to the patient under consideration.


Mood disturbance and dysthymia are part of the clinical syndrome of hypogonadism. Epidemiological studies have found a positive association between testosterone levels and mood, and depressed aging males have lower testosterone levels than controls (Barrett-Connor, Von Muhlen et al 1999). Furthermore, induction of a hypogonadal state during treatment of men for prostate cancer leads to an increase in depression scores (Almeida et al 2004). Trials of testosterone treatment effects on mood have varied in outcome. Data on the effects on men with depression are conflicting (Seidman et al 2001; Pope et al 2003) but there is evidence that testosterone treatment of older hypogonadal men does result in improvements in mood (Wang et al 1996) and that this may occur through changes in regional brain perfusion (Azad et al 2003).
These oral medications reversibly inhibit penile-specific PDE5 and enhance the nitric oxide–cGMP pathways of cavernous smooth muscle relaxation; that is, all prevent the breakdown of cGMP by PDE5. It is important to emphasize to patients that these drugs augment the body’s natural erectile mechanisms, therefore the neural and psychoemotional stimuli typically needed for arousal still need to be activated for the drugs to be efficacious. 

^ Butenandt A, Hanisch G (1935). "Uber die Umwandlung des Dehydroandrosterons in Androstenol-(17)-one-(3) (Testosterone); um Weg zur Darstellung des Testosterons auf Cholesterin (Vorlauf Mitteilung). [The conversion of dehydroandrosterone into androstenol-(17)-one-3 (testosterone); a method for the production of testosterone from cholesterol (preliminary communication)]". Chemische Berichte (in German). 68 (9): 1859–62. doi:10.1002/cber.19350680937.

ED usually has something physical behind it, particularly in older men. But psychological factors can be a factor in many cases of ED. Experts say stress, depression, poor self-esteem, and performance anxiety can short-circuit the process that leads to an erection. These factors can also make the problem worse in men whose ED stems from something physical.
Pellets. Your doctor will place the testosterone pellets under the skin of your upper hip or buttocks. Your doctor will give a shot of local anesthesia to numb your skin, then make a small cut and place the pellets inside the fatty tissues underneath your skin. This medication dissolves slowly and is released over about 3-6 months, depending on the number of pellets. 
A number of research groups have tried to further define the relationship of testosterone and body composition by artificial alteration of testosterone levels in eugonadal populations. Induction of a hypogonadal state in healthy men (Mauras et al 1998) or men with prostate cancer (Smith et al 2001) using a gonadotrophin-releasing-hormone (GnRH) analogue was shown to produce increases in fat mass and decreased fat free mass. Another experimental approach in healthy men featured suppression of endogenous testosterone production with a GnRH analogue, followed by treatment with different doses of weekly intramuscular testosterone esters for 20 weeks. Initially the experiments involved men aged 18–35 years (Bhasin et al 2001) but subsequently the study was repeated with a similar protocol in men aged 60–75 years (Bhasin et al 2005). The different doses given were shown to produce a range of serum concentrations from subphysiological to supraphysiological (Bhasin et al 2001). A given testosterone dose produced higher serum concentrations of testosterone in the older age group (Bhasin et al 2005). Subphysiological dosing of testosterone produced a gain in fat mass and loss of fat free mass during the study. There were sequential decreases in fat mass and increases in fat free mass with each increase of testosterone dose. These changes in body composition were seen in physiological and supraphysiological treatment doses. The trend was similar in younger versus older men but the gain of fat mass at the lowest testosterone dose was less prominent in older patients (Bhasin et al 2001; Bhasin et al 2005). With regard to muscle function, the investigators showed dose dependent increases in leg strength and power with testosterone treatment in young and older men but there was no improvement in fatigability (Storer et al 2003; Bhasin et al 2005).
Testosterone is significantly correlated with aggression and competitive behaviour and is directly facilitated by the latter. There are two theories on the role of testosterone in aggression and competition.[77] The first one is the challenge hypothesis which states that testosterone would increase during puberty thus facilitating reproductive and competitive behaviour which would include aggression.[77] Thus it is the challenge of competition among males of the species that facilitates aggression and violence.[77] Studies conducted have found direct correlation between testosterone and dominance especially among the most violent criminals in prison who had the highest testosterone levels.[77] The same research also found fathers (those outside competitive environments) had the lowest testosterone levels compared to other males.[77]
Cross-sectional studies conducted at the time of diagnosis of BPH have failed to show consistent differences in testosterone levels between patients and controls. A prospective study also failed to demonstrate a correlation between testosterone and the development of BPH (Gann et al 1995). Clinical trials have shown that testosterone treatment of hypogonadal men does cause growth of the prostate, but only to the size seen in normal men, and also causes a small increase in prostate specific antigen (PSA) within the normal range (Rhoden and Morgentaler 2005). Despite growth of the prostate a number of studies have failed to detect any adverse effects on symptoms of urinary obstruction or physiological measurements such as flow rates and residual volumes (Snyder et al 1999; Kenny et al 2000, 2001). Despite the lack of evidence linking symptoms of BPH to testosterone treatment, it remains important to monitor for any new or deteriorating problems when commencing patients on testosterone treatment, as the small growth of prostate tissue may adversely affect a certain subset of individuals.
The largest amounts of testosterone (>95%) are produced by the testes in men,[2] while the adrenal glands account for most of the remainder. Testosterone is also synthesized in far smaller total quantities in women by the adrenal glands, thecal cells of the ovaries, and, during pregnancy, by the placenta.[122] In the testes, testosterone is produced by the Leydig cells.[123] The male generative glands also contain Sertoli cells, which require testosterone for spermatogenesis. Like most hormones, testosterone is supplied to target tissues in the blood where much of it is transported bound to a specific plasma protein, sex hormone-binding globulin (SHBG).
Several pathways have been described to explain how information travels from the hypothalamus to the sacral autonomic centers. One pathway travels from the dorsomedial hypothalamus through the dorsal and central gray matter, descends to the locus ceruleus, and projects ventrally in the mesencephalic reticular formation. Input from the brain is conveyed through the dorsal spinal columns to the thoracolumbar and sacral autonomic nuclei.
The rise in testosterone levels during competition predicted aggression in males but not in females.[86] Subjects who interacted with hand guns and an experimental game showed rise in testosterone and aggression.[87] Natural selection might have evolved males to be more sensitive to competitive and status challenge situations and that the interacting roles of testosterone are the essential ingredient for aggressive behaviour in these situations.[88] Testosterone produces aggression by activating subcortical areas in the brain, which may also be inhibited or suppressed by social norms or familial situations while still manifesting in diverse intensities and ways through thoughts, anger, verbal aggression, competition, dominance and physical violence.[89] Testosterone mediates attraction to cruel and violent cues in men by promoting extended viewing of violent stimuli.[90] Testosterone specific structural brain characteristic can predict aggressive behaviour in individuals.[91]

When stimulated by the nerves, the spongy tissue arranges itself in such a way that more blood can be stored in the penis. The veins running through the outer sheath of the penis then compress which stops the blood from leaving the penis. As the blood is stopped from flowing out, the penis fills with blood and stretches within the outer casing, giving an erection.
Obesity and metabolic syndrome can cause changes in blood pressure, body composition, and cholesterol which may lead to ED. Other conditions that may contribute to erectile dysfunction include Parkinson’s, multiple sclerosis, Peyronie’s disease, sleep disorders, alcoholism, and drug abuse. Taking certain medications can also increase your risk for ED.
Treatment involves addressing the underlying causes, lifestyle modifications, and addressing psychosocial issues.[1] In many cases, a trial of pharmacological therapy with a PDE5 inhibitor, such as sildenafil, can be attempted. In some cases, treatment can involve inserting prostaglandin pellets into the urethra, injecting smooth muscle relaxants and vasodilators into the penis, a penile prosthesis, a penis pump, or vascular reconstructive surgery.[1][2] It is the most common sexual problem in men.[3]
ICI therapy often produces a reliable erection, which comes down after 20-30 minutes or with climax. Since the ICI erection is not regulated by your penile nerves, you should not be surprised if the erection lasts after orgasm. The most common side effect of ICI therapy is a prolonged erection. Prolonged erections (>1 hour) can be reversed by a second injection (antidote) in the office.
5. Medline Plus. US National Library of Medicine. NIH National Institutes of Health. Drugs that may cause impotence (updated 21 Jan 2015). http://www.nlm.nih.gov/medlineplus/ency/article/004024.htm (accessed Nov 2016). myDr myDr provides comprehensive Australian health and medical information, images and tools covering symptoms, diseases, tests, medicines and treatments, and nutrition and fitness.Related ArticlesImpotence treatmentsIf you have impotence (erectile dysfunction), the treatment your doctor recommends will depend on thErectile dysfunction: visiting your doctorFind out what questions a doctor may ask when discussing erectile dysfunction (ED, or impotenceGum disease linked to erectile dysfunctionAdvanced gum disease (periodontitis) has been linked to an increased risk of erectile dysfunction, wPeyronie's diseasePeyronie’s disease is condition where a band of scar tissue forms in the penis, causing aAdvertisement

Attention, memory, and spatial ability are key cognitive functions affected by testosterone in humans. Preliminary evidence suggests that low testosterone levels may be a risk factor for cognitive decline and possibly for dementia of the Alzheimer's type,[100][101][102][103] a key argument in life extension medicine for the use of testosterone in anti-aging therapies. Much of the literature, however, suggests a curvilinear or even quadratic relationship between spatial performance and circulating testosterone,[104] where both hypo- and hypersecretion (deficient- and excessive-secretion) of circulating androgens have negative effects on cognition.


Tests such as the bulbocavernosus reflex test are used to determine if there is sufficient nerve sensation in the penis. The physician squeezes the glans (head) of the penis, which immediately causes the anus to contract if nerve function is normal. A physician measures the latency between squeeze and contraction by observing the anal sphincter or by feeling it with a gloved finger inserted past the anus.
Other factors leading to erectile dysfunction are diabetes mellitus, which is a well-known cause of neuropathy).[1] ED is also related to generally poor physical health, poor dietary habits, obesity, and most specifically cardiovascular disease, such as coronary artery disease and peripheral vascular disease.[1] Screening for cardiovascular risk factors, such as smoking, dyslipidemia, hypertension, and alcoholism is helpful.[1]
A recent study compared total and bioavailable testosterone levels with inflammatory cytokines in men aged 65 and over. There was an inverse correlation with the pro-inflammatory soluble interleukin-6 receptor, but no association with interleukin-6 (IL-6), highly sensitive CRP (hsCRP), tumor necrosis factor-α (TNF-α) or interleukin-1β (IL-1β (Maggio et al 2006). Another trial found that young men with idiopathic hypogonadotrophic hypogonadism had higher levels of proinflammatory factors interleukin-2 (IL-2), interleukin-4 (IL-4), complement C3c and total immunoglobulin in comparison to controls (Yesilova et al 2000). Testosterone treatment in a group of hypogonadal men, mostly with known coronary artery disease, induced anti-inflammatory changes in the cytokine profile of reduced IL-1β and TNF-α and increased IL-10 (Malkin, Pugh, Jones et al 2004).
Testosterone is the primary sex hormone in men, and it is responsible for the development of many of the physical characteristics that are considered typically male. Women also produce the hormone in much smaller amounts. Testosterone, part of a hormone class known as androgens, is produced by the testicles after stimulation by the pituitary gland, which is located near the base of the brain, and it sends signals to a male's testicles (or to a woman's ovaries) that spark feelings of sexual desire. (1)
Erectile dysfunction is a common finding in the aging male. A prevalence of over 70% was found in men older than 70 in a recent cross-sectional study (Ponholzer et al 2005). Treatment with phosphodiesterase-5 (PDE-5) inhibitors is proven to be effective for the majority of men but some do not respond (Shabsigh and Anastasiadis 2003). The condition is multi-factorial, with contributions from emotional, vascular, neurological and pharmacological factors. The concept of erectile dysfunction as a vascular disease is particularly interesting in view of the evidence presented above, linking testosterone to atherosclerosis and describing its action as a vasodilator.
The physical side effects of chemotherapy are usually temporary and resolve within one to two weeks after stopping the chemotherapy. However, chemotherapy agents, such as Ciplatin or Vincristine, may interfere with the nerves that control erection leading to possible impotence. Make sure you discuss potential side effects of cancer chemotherapy with your doctor or healthcare provider.
Testosterone is the primary male sex hormone and an anabolic steroid. In male humans, testosterone plays a key role in the development of male reproductive tissues such as testes and prostate, as well as promoting secondary sexual characteristics such as increased muscle and bone mass, and the growth of body hair.[2] In addition, testosterone is involved in health and well-being,[3] and the prevention of osteoporosis.[4] Insufficient levels of testosterone in men may lead to abnormalities including frailty and bone loss.
Associated morbidity may include various other male sexual dysfunctions, such as premature (early) ejaculation and male hypoactive sexual desire disorder. The NHSLS found that 28.5% of men aged 18-59 years reported premature ejaculation, and 15.8% lacked sexual interest during the past year. An additional 17% reported anxiety about sexual performance, and 8.1% had a lack of pleasure in sex. [51]
Camacho EM1, Huhtaniemi IT, O'Neill TW, Finn JD, Pye SR, Lee DM, Tajar A, Bartfai G, Boonen S, Casanueva FF, Forti G, Giwercman A, Han TS, Kula K, Keevil B, Lean ME, Pendleton N, Punab M, Vanderschueren D, Wu FC; EMAS Group. “Age-associated changes in hypothalamic-pituitary-testicular function in middle-aged and older men are modified by weight change and lifestyle factors: longitudinal results from the European Male Ageing Study.” Eur J Endocrinol. 2013 Feb 20;168(3):445-55. doi: 10.1530/EJE-12-0890. Print 2013 Mar.
Men who produce more testosterone are more likely to engage in extramarital sex.[55] Testosterone levels do not rely on physical presence of a partner; testosterone levels of men engaging in same-city and long-distance relationships are similar.[54] Physical presence may be required for women who are in relationships for the testosterone–partner interaction, where same-city partnered women have lower testosterone levels than long-distance partnered women.[59]
×