Many clinical studies have looked at the effect of testosterone treatment on body composition in hypogonadal men or men with borderline low testosterone levels. Some of these studies specifically examine these changes in older men (Tenover 1992; Morley et al 1993; Urban et al 1995; Sih et al 1997; Snyder et al 1999; Kenny et al 2001; Ferrando et al 2002; Steidle et al 2003; Page et al 2005). The data from studies, on patients from all age groups, are consistent in showing an increase in fat free mass and decrease in fat mass or visceral adiposity with testosterone treatment. A recent meta-analysis of 16 randomized controlled trials of testosterone treatment effects on body composition confirms this pattern (Isidori et al 2005). There have been less consistent results with regard to the effects of testosterone treatment of muscle strength. Some studies have shown an increase in muscle strength (Ferrando et al 2002; Page et al 2005) with testosterone whilst others have not (Snyder et al 1999). Within the same trial some muscle group strengths may improve whilst others do not (Ly et al 2001). It is likely that the differences are partly due to the methodological variations in assessing strength, but it also possible that testosterone has different effects on the various muscle groups. The meta-analysis found trends toward significant improvements in dominant knee and hand grip strength only (Isidori et al 2005).
Treatment depends on the underlying cause. In general, exercise, particularly of the aerobic type, is effective for preventing ED during midlife. Exercise as a treatment is under investigation.[22]:6, 18–19 For tobacco smokers, cessation often results in a significant improvement.[23] Oral pharmacotherapy and vacuum erection devices are first-line treatments,[22]:20, 24 followed by injections of drugs into the penis, as well as penile implants.[22]:25–26 Vascular reconstructive surgeries are beneficial in certain groups.[24]
Drugs.com provides accurate and independent information on more than 24,000 prescription drugs, over-the-counter medicines and natural products. This material is provided for educational purposes only and is not intended for medical advice, diagnosis or treatment. Data sources include IBM Watson Micromedex (updated Jan 9th, 2019), Cerner Multum™ (updated Jan 14th, 2019), Wolters Kluwer™ (updated Jan 7th, 2019) and others. To view content sources and attributions, please refer to our editorial policy.
The participants were seen every 4 weeks. Blood was taken to measure hormone levels, and questionnaires were given to assess physical function, health status, vitality, and sexual function. Body fat and muscle measurements were also taken at the beginning and end of the 16 weeks. The study was funded in part by NIH’s National Institute on Aging (NIA) and National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK). Results appeared in the September 12, 2013, issue of the New England Journal of Medicine.
Implantation of penile prosthesis remains an important option for men with ED if medical treatment fails or is inappropriate. Prostheses are available as a saline-filled silicone device or a malleable device. The benefit of the former is a more natural appearance in the deflated state, closely approximating the appearance of a flaccid penis. The trade-off is a higher mechanical failure rate and higher cost. Satisfaction rates for patients who underwent penile prosthesis surgery have been reported to be near 90%.36 However, in the majority of patients who receive this treatment, less invasive alternatives have failed and therefore satisfaction with this treatment would be expected to be higher in this subset of patients. Risks of these devices include surgical and anesthetic risk, device infection, and device malfunction. Mechanical failure rates depend on the specific device being investigated. Overall, the percentage of devices that are free from mechanical failure at 5 years ranges from 84% to 94%.19 Infection rates in the era of coated devices and improved techniques are reported to be less than 1%.37

Epidemiological studies have also assessed links between serum testosterone and non-coronary atherosclerosis. A study of over 1000 people aged 55 years and over found an inverse correlation between serum total and bioavailable testosterone and the amount of aortic atherosclerosis in men, as assessed by radiological methods (Hak et al 2002). Increased intima-media thickness (IMT) is an early sign of atherosclerosis and has also been shown to predict cardiovascular mortality (Murakami et al 2005). Cross-sectional studies have found that testosterone levels are negatively correlated with carotid IMT in independently living men aged 74–93 years (van den Beld et al 2003), diabetic men (Fukui et al 2003) and young obese men (De Pergola et al 2003). A 4-year follow up study of the latter population showed that free testosterone was also inversely correlated with the rate of increase of IMT (Muller et al 2004).
The group's 2010 clinical practice guidelines make it clear that "the threshold testosterone level below which symptoms of androgen deficiency and adverse health outcomes occur and testosterone administration improves outcomes in the general population is not known." They also clearly advise against screening men in the general population to avoid "labeling and medicalization of otherwise healthy men for whom testing, treatment, and monitoring would represent a burden with unclear benefit."
In one study, 9.6% reported ‘occasional’ erectile dysfunction, 8.9% reported erectile dysfunction occurring ‘often’, and 18.6% reported erectile dysfunction occurring ‘all the time’. Of these, only 11.6% had received treatment.In another study, only 14.1% of men reported that they had received treatment, despite experiencing erectile dysfunction for longer than 12 months.
Although some men believe that taking testosterone medications may help them feel younger and more vigorous as they age, few rigorous studies have examined testosterone therapy in men who have healthy testosterone levels. And some small studies have revealed mixed results. For example, in one study healthy men who took testosterone medications increased muscle mass but didn't gain strength.
“This study establishes testosterone levels at which various physiological functions start to become impaired, which may help provide a rationale for determining which men should be treated with testosterone supplements,” Finkelstein says. “But the biggest surprise was that some of the symptoms routinely attributed to testosterone deficiency are actually partially or almost exclusively caused by the decline in estrogens that is an inseparable result of lower testosterone levels.”
4. National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK). Erectile dysfunction (updated Nov 2015). https://www.niddk.nih.gov/health-information/health-topics/urologic-disease/erectile-dysfunction/Pages/facts.aspx (accessed Nov 2016). myDr myDr provides comprehensive Australian health and medical information, images and tools covering symptoms, diseases, tests, medicines and treatments, and nutrition and fitness.Related ArticlesImpotence causesFind out the physical and psychological causes of impotence, also called erectile dysfunction or ED.Erectile dysfunction: visiting your doctorFind out what questions a doctor may ask when discussing erectile dysfunction (ED, or impotence8 Surprising causes of erectile dysfunctionOccasional erectile dysfunction is not uncommon, but if it's persistent, erectile dysfunction caAdvertisement

Epidemiological data has associated low testosterone levels with atherogenic lipid parameters, including lower HDL cholesterol (Lichtenstein et al 1987; Haffner et al 1993; Van Pottelbergh et al 2003) and higher total cholesterol (Haffner et al 1993; Van Pottelbergh et al 2003), LDL cholesterol (Haffner et al 1993) and triglyceride levels (Lichtenstein et al 1987; Haffner et al 1993). Furthermore, these relationships are independent of other factors such as age, obesity and glucose levels (Haffner et al 1993; Van Pottelbergh et al 2003). Interventional trails of testosterone replacement have shown that treatment causes a decrease in total cholesterol. A recent meta-analysis of 17 randomized controlled trials confirmed this and found that the magnitude of changes was larger in trials of patients with lower baseline testosterone levels (Isidori et al 2005). The same meta-analysis found no significant overall change in LDL or HDL cholesterol levels but in trials with baseline testosterone levels greater than 10 nmol/l, there was a small reduction in HDL cholesterol with testosterone treatment.
×