An occasional problem achieving an erection is nothing to worry about. But failure to do so more than 50% of the time at any age may indicate a condition that needs treatment. About 40% of men in their 40s report at least occasional problems getting and maintaining erections. So do more than half (52%) of men aged 40 to 70, and about 70% of men in their 70s.
Studies have demonstrated reduced testosterone levels in men with heart failure as well as other endocrine changes (Tappler and Katz 1979; Kontoleon et al 2003). Treatment of cardiac failure with chronic mechanical circulatory support normalizes many of these changes, including testosterone levels (Noirhomme et al 1999). More recently, two double-blind randomized controlled trials of testosterone treatment for men with low or low-normal serum testosterone levels and heart failure have shown improvements in exercise capacity and symptoms (Pugh et al 2004; Malkin et al 2006). The mechanism of these benefits is currently unclear, although a study of the acute effects of buccal testosterone given to men with chronic cardiac failure under invasive monitoring showed that testosterone increased cardiac index and reduced systemic vascular resistance (Pugh et al 2003). Testosterone may prove useful in the management of cardiac failure but further research is needed.
A physical cause can be identified in about 80% of cases.[1] These include cardiovascular disease, diabetes mellitus, neurological problems such as following prostatectomy, hypogonadism, and drug side effects. Psychological impotence is where erection or penetration fails due to thoughts or feelings; this is somewhat less frequent, in the order of about 10% of cases.[1] In psychological impotence, there is a strong response to placebo treatment.
Patients at high cardiovascular risk should not be treated for ED until their cardiac condition is stabilize. These conditions include unstable or refractory angina, myocardial infarction or cerebrovascular accident within the past 2 weeks, uncontrolled hypertension, New York Heart Association (NYHA) Functional Classification III-IV congestive heart failure, high-risk arrhythmias, hypertrophic obstructive cardiomyopathies, and moderate-to-severe valvular disease.25 This class of drugs is also contraindicated in patients who use nitroglycerin or nitrate-containing compounds.26, 27
It appears that testosterone has NOS-independent pathways as well. In one study, castrated rats were implanted with testosterone pellets and then divided into a group that received an NOS inhibitor (L-nitro-L-arginine methyl ester [L-NAME]) and a control group that received no enzyme. [24] The castrated rats that were given testosterone pellets and L-NAME still had partial erections, a result suggesting the presence of a pathway independent of NOS activity.
Testosterone is used as a medication for the treatment of males with too little or no natural testosterone production, certain forms of breast cancer,[10] and gender dysphoria in transgender men. This is known as hormone replacement therapy (HRT) or testosterone replacement therapy (TRT), which maintains serum testosterone levels in the normal range. Decline of testosterone production with age has led to interest in androgen replacement therapy.[170] It is unclear if the use of testosterone for low levels due to aging is beneficial or harmful.[171]
One study examined the role of testosterone supplementation in hypogonadal men with ED. These men were considered nonresponders to sildenafil, and their erections were monitored by assessing nocturnal penile tumescence (NPT). After these men were given testosterone transdermally for 6 months, the number of NPTs increased, as did the maximum rigidity with sildenafil. [18] This study suggests that a certain level of testosterone may be necessary for PDE5 inhibitors to function properly.

The hypogonadal-obesity-adipocytokine cycle hypothesis. Adipose tissue contains the enzyme aromatase which metabolises testosterone to oestrogen. This results in reduced testosterone levels, which increase the action of lipoprotein lipase and increase fat mass, thus increasing aromatisation of testosterone and completing the cycle. Visceral fat also promotes lower testosterone levels by reducing pituitary LH pulse amplitude via leptin and/or other factors. In vitro studies have shown that leptin also inhibits testosterone production directly at the testes. Visceral adiposity could also provide the link between testosterone and insulin resistance (Jones 2007).


Given the high risk of priapism during escalation of therapy for intracorporeal injection, it is recommended that the drugs be administered in a supervised office visit initially and that the patient be given a well-articulated plan for treatment of priapism if it occurs. Escalation guidelines for alprostadil alone vary, but a general guideline is to start at 2.5 mcg and increase by 2.5 mcg to a dose of 5 mcg and then in increments of 5 mcg to 10 mcg until an erection sufficient for penetration, not lasting more than 1 hour, is achieved. If there is no response to the initial 2.5-mcg dose, escalation dosing can be slightly more liberal.34 A European prospective trial of PGE1 alone found 91% of the 54 patients completing the 4 years of the study reported good or better tolerability and satisfaction with therapy.35
Abnormally high levels of testosterone could be the result of an adrenal gland disorder, or even cancer of the testes. High levels may also occur in less serious conditions. Congenital adrenal hyperplasia, which can affect males and females, is a rare but natural cause for elevated testosterone production. Your doctor may order other tests if your levels are exceedingly high.
There is a polymorphic CAG repeat sequence in the androgen receptor gene, which codes for a variable number of glutamine amino acids in the part of the receptor affecting gene transcription. A receptor with a short CAG sequence produces greater activity when androgens attach, and men with shorter CAG polymorphisms exhibit androgenic traits, such as preserved bone density (Zitzmann et al 2001) and prostate growth during testosterone treatment (Zitzmann et al 2003). Indirect evidence of the importance of androgens in the development of prostate cancer is provided by case control study findings of a shorter, more active CAG repeat sequence in the androgen receptor gene of patients with prostate cancer compared with controls (Hsing et al 2000, 2002).
In a recent study of male workers, men with low testosterone levels had an increased chance of severe erectile dysfunction (Kratzik et al 2005), although such a link had not been found previously (Rhoden et al 2002). Certainly erectile dysfunction is considered part of the clinical syndrome of hypogonadism, and questions regarding erectile dysfunction form part of the clinical assessment of patients with hypogonadism (Morley et al 2000; Moore et al 2004).
×