While studies are limited, it has been shown that male sexual dysfunction can also negatively impact the sexual function of female partners. A study comparing the sexual function of women with partners with erectile dysfunction to those without showed that sexual arousal, lubrication, orgasm, satisfaction, pain and total score were significantly lower in those who had partners with erectile dysfunction. Later in that study, a large proportion of the men with erectile dysfunction underwent treatment. Following treatment, sexual arousal, lubrication, orgasm, satisfaction and pain were all significantly increased. It was concluded that female sexual function is impacted by male erection status, which may improve following treatment of male sexual dysfunction.
The hypogonadal-obesity-adipocytokine cycle hypothesis. Adipose tissue contains the enzyme aromatase which metabolises testosterone to oestrogen. This results in reduced testosterone levels, which increase the action of lipoprotein lipase and increase fat mass, thus increasing aromatisation of testosterone and completing the cycle. Visceral fat also promotes lower testosterone levels by reducing pituitary LH pulse amplitude via leptin and/or other factors. In vitro studies have shown that leptin also inhibits testosterone production directly at the testes. Visceral adiposity could also provide the link between testosterone and insulin resistance (Jones 2007).

In order to establish whether normal erections are occurring overnight (nocturnal erections), the doctor may organise nocturnal penile tumescence (NPT) testing. This involves wearing a monitor overnight in your own home. The data from this monitor is then assessed to analyse how often erections occurred, how long they lasted, and how rigid and large the penis was during the erections. If NPT testing is normal, the cause of erectile dysfunction is usually psychological. If not, further testing of the blood flow in the genital area may be required to see if there is blockage or leakage. The doctor may also organise a blood test of levels of hormones such as testosterone, prolactin and thyroid stimulating hormone to see if these are contributing to the erectile dysfunction.


Inside the cell, NOS catalyzes the oxidation of L-arginine to NO and L-citrulline. Endogenous blockers of this pathway have been identified. The gaseous NO that is produced acts as a neurotransmitter or paracrine messenger. Its biologic half-life is only 5 seconds. NO may act within the cell or diffuse and interact with nearby target cells. In the corpora cavernosa, NO activates guanylate cyclase, which in turn increases cyclic guanosine monophosphate (cGMP). Relaxation of vascular smooth muscles by cGMP leads to vasodilation and increased blood flow.
Chronic stress dumps adrenaline in your system multiple times a day. And that can lead to high blood pressure, heart disease, obesity, and diabetes. Chronic stress is like red-lining your car all day long. When you drive 100 mph all the time, something is going to break down. A high-stress environment can actually change the way your brain sends messages to your body. Dumping too much adrenaline into your bloodstream can affect blood flow and severely limit your ability to achieve and maintain an erection.
The prevalence of biochemical testosterone deficiency increases with age. This is partly due to decreasing testosterone levels associated with illness or debility but there is also convincing epidemiological data to show that serum free and total testosterone levels also fall with normal aging (Harman et al 2001; Feldman et al 2002). The symptoms of aging include tiredness, lack of energy, reduced strength, frailty, loss of libido, decreased sexual performance depression and mood change. Men with hypogonadism experience similar symptoms. This raises the question of whether some symptoms of aging could be due to relative androgen deficiency. On the other hand, similarities between normal aging and the symptoms of mild androgen deficiency make the clinical diagnosis of hypogonadism in aging men more challenging.
Even before the study yields its findings, Dr. Swerdloff said a few important points should be emphasized. "I want to make it clear that this is not a made-up disease," he said. "It is well known in younger men that if you have a failure to produce normal testosterone, there are certain signs and symptoms that create a kind of syndrome. Treatment for low testosterone has been documented to be beneficial."
Dr. Ronald Swerdloff, chief of the endocrinology division at the Harbor-UCLA Medical Center and a professor of medicine at UCLA's David Geffen School of Medicine, served on the panel of experts who developed the Endocrine Society's guidelines. He is also the principal investigator for one of the 12 sites of The Testosterone Trial in Older Men, a nationwide study funded mainly by the National Institute on Aging. The study of 800 men over age 65 with low testosterone is looking at whether men using AndroGel for one year, compared to placebo, will show improvements in walking speed, sexual activity, vitality, memory, and anemia. The study will be completed in June 2015.

The regulation of testosterone production is tightly controlled to maintain normal levels in blood, although levels are usually highest in the morning and fall after that. The hypothalamus and the pituitary gland are important in controlling the amount of testosterone produced by the testes. In response to gonadotrophin-releasing hormone from the hypothalamus, the pituitary gland produces luteinising hormone which travels in the bloodstream to the gonads and stimulates the production and release of testosterone.
"I am very cautious about committing someone for life to medication," said Dr. Kathleen L. Wyne, who directs research on diabetes and metabolism at Houston's Methodist Hospital Research Institute and serves on the Sex Hormone and Reproductive Endocrinology Scientific Committee for the American Association of Clinical Endocrinologists. "That does frustrate patients because they have heard about [Low T] from TV and friends."
But if a man with sleep apnea is diagnosed with low testosterone alone, taking the supplemental hormone can worsen sleep apnea. That's why it's crucial for men with low testosterone to get a thorough workup by an endocrinologist so underlying conditions that can cause low testosterone, such as sleep apnea or pituitary-gland tumors, don't go undiagnosed, Dr. Goodman says.
A large number of trials have demonstrated a positive effect of testosterone treatment on bone mineral density (Katznelson et al 1996; Behre et al 1997; Leifke et al 1998; Snyder et al 2000; Zacharin et al 2003; Wang, Cunningham et al 2004; Aminorroaya et al 2005; Benito et al 2005) and bone architecture (Benito et al 2005). These effects are often more impressive in longer trials, which have shown that adequate replacement will lead to near normal bone density but that the full effects may take two years or more (Snyder et al 2000; Wang, Cunningham et al 2004; Aminorroaya et al 2005). Three randomized placebo-controlled trials of testosterone treatment in aging males have been conducted (Snyder et al 1999; Kenny et al 2001; Amory et al 2004). One of these studies concerned men with a mean age of 71 years with two serum testosterone levels less than 12.1nmol/l. After 36 months of intramuscular testosterone treatment or placebo, there were significant increases in vertebral and hip bone mineral density. In this study, there was also a significant decrease in the bone resorption marker urinary deoxypyridinoline with testosterone treatment (Amory et al 2004). The second study contained men with low bioavailable testosterone levels and an average age of 76 years. Testosterone treatment in the form of transdermal patches was given for 1 year. During this trial there was a significant preservation of hip bone mineral density with testosterone treatment but testosterone had no effect on bone mineral density at other sites including the vertebrae. There were no significant alterations in bone turnover markers during testosterone treatment (Kenny et al 2001). The remaining study contained men of average age 73 years. Men were eligible for the study if their serum total testosterone levels were less than 16.5 nmol/L, meaning that the study contained men who would usually be considered eugonadal. The beneficial effects of testosterone on bone density were confined to the men who had lower serum testosterone levels at baseline and were seen only in the vertebrae. There were no significant changes in bone turnover markers. Testosterone in the trial was given via scrotal patches for a 36 month duration (Snyder et al 1999). A recent meta-analysis of the effects on bone density of testosterone treatment in men included data from these studies and two other randomized controlled trials. The findings were that testosterone produces a significant increase of 2.7% in the bone mineral density at the lumber spine but no overall change at the hip (Isidori et al 2005). These results from randomized controlled trials in aging men show much smaller benefits of testosterone treatment on bone density than have been seen in other trials. This could be due to the trials including patients who are not hypogonadal and being too short to allow for the maximal effects of testosterone. The meta-analysis also assessed the data concerning changes of bone formation and resorption markers during testosterone treatment. There was a significant decrease in bone resorption markers but no change in markers of bone formation suggesting that reduction of bone resorption may be the primary mode of action of testosterone in improving bone density (Isidori et al 2005).
Sleep apnea is another frequently listed contraindication to testosterone treatment. There have been a few reports of the development, or worsening, of sleep apnea during testosterone therapy (Matsumoto et al 1985) but sleep apnea is actually associated with lower serum testosterone levels (Luboshitzky et al 2002). The reduction in fat mass during treatment with testosterone could potentially be beneficial for sleep apnea, so many specialists will still consider patients for treatment with appropriate monitoring. It is wise to take a clinical history for sleep apnea during testosterone treatment in all men and perform sleep studies in those who develop symptoms.
Testosterone is necessary for normal sperm development. It activates genes in Sertoli cells, which promote differentiation of spermatogonia. It regulates acute HPA (hypothalamic–pituitary–adrenal axis) response under dominance challenge.[22] Androgen including testosterone enhances muscle growth. Testosterone also regulates the population of thromboxane A2 receptors on megakaryocytes and platelets and hence platelet aggregation in humans.[23][24]
Testosterone replacement therapy is currently only FDA approved for men who have been diagnosed with hypogonadism, but it’s also prescribed off-label for older men who take it in hopes that it will improve their libido. The use of testosterone therapy is increasingly common in the United States, with more than 2 million men receiving the therapy. Not every man benefits from taking testosterone supplements. Testosterone is available in different forms, including topicals such as gels, creams, and patches; injections; and pellets that are surgically placed directly beneath the skin. (7)
Lifestyle choices that impair blood circulation can contribute to ED. Smoking, excessive drinking, and drug abuse may damage the blood vessels and reduce blood flow to the penis. Smoking makes men with atherosclerosis particularly vulnerable to ED. Being overweight and getting too little exercise also contribute to ED.  Studies indicate that men who exercise regularly have a lower risk of ED.

Recently, a panel with cooperation from international andrology and urology societies, published specific recommendations with regard to the diagnosis of Late-onset Hypogonadism (Nieschlag et al 2005). These are summarized in the following text. It is advised that at least two serum testosterone measurements, taken before 11 am on different mornings, are necessary to confirm the diagnosis. The second sample should also include measurement of gonadotrophin and prolactin levels, which may indicate the need for further investigations for pituitary disease. Patients with serum total testosterone consistently below 8 nmol/l invariably demonstrate the clinical syndrome of hypogonadism and are likely to benefit from treatment. Patients with serum total testosterone in the range 8–12 nmol/l often have symptoms attributable to hypogonadism and it may be decided to offer either a clinical trial of testosterone treatment or to make further efforts to define serum bioavailable or free testosterone and then reconsider treatment. Patients with serum total testosterone persistently above 12 nmol/l do not have hypogonadism and symptoms are likely to be due to other disease states or ageing per se so testosterone treatment is not indicated.
^ Mehta PH, Jones AC, Josephs RA (Jun 2008). "The social endocrinology of dominance: basal testosterone predicts cortisol changes and behavior following victory and defeat" (PDF). Journal of Personality and Social Psychology. 94 (6): 1078–93. CiteSeerX 10.1.1.336.2502. doi:10.1037/0022-3514.94.6.1078. PMID 18505319. Archived from the original (PDF) on April 19, 2009.
An international consensus document was recently published and provides guidance on the diagnosis, treatment and monitoring of late-onset hypogonadism (LOH) in men. The diagnosis of LOH requires biochemical and clinical components. Controversy in defining the clinical syndrome continues due to the high prevalence of hypogonadal symptoms in the aging male population and the non-specific nature of these symptoms. Further controversy surrounds setting a lower limit of normal testosterone, the limitations of the commonly available total testosterone result in assessing some patients and the unavailability of reliable measures of bioavailable or free testosterone for general clinical use. As with any clinical intervention testosterone treatment should be judged on a balance of risk versus benefit. The traditional benefits of testosterone on sexual function, mood, strength and quality of life remain the primary goals of treatment but possible beneficial effects on other parameters such as bone density, obesity, insulin resistance and angina are emerging and will be reviewed. Potential concerns regarding the effects of testosterone on prostate disease, aggression and polycythaemia will also be addressed. The options available for treatment have increased in recent years with the availability of a number of testosterone preparations which can reliably produce physiological serum concentrations.
Acupuncture may help treat psychological ED, though studies are limited and inconclusive. You’ll likely need several appointments before you begin to notice any improvements. When choosing an acupuncturist, look for a certified practitioner who uses disposable needles and follows U.S. Food and Drug Administration guidelines for needle disposal and sterilization.
Erectile dysfunction - (ED) or impotence is sexual dysfunction characterized by the inability to develop or maintain an erection of the penis during sexual activity. A penile erection is the hydraulic effect of blood entering and being retained in sponge-like bodies within the penis. The process is most often initiated as a result of sexual arousal, when signals are transmitted from the brain to nerves in the penis.
The participants were seen every 4 weeks. Blood was taken to measure hormone levels, and questionnaires were given to assess physical function, health status, vitality, and sexual function. Body fat and muscle measurements were also taken at the beginning and end of the 16 weeks. The study was funded in part by NIH’s National Institute on Aging (NIA) and National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK). Results appeared in the September 12, 2013, issue of the New England Journal of Medicine.
Erectile dysfunction - (ED) or impotence is sexual dysfunction characterized by the inability to develop or maintain an erection of the penis during sexual activity. A penile erection is the hydraulic effect of blood entering and being retained in sponge-like bodies within the penis. The process is most often initiated as a result of sexual arousal, when signals are transmitted from the brain to nerves in the penis.
Testosterone is the principle sex hormone responsible for the development of reproductive function in male vertebrates. Testosterone is one of the hormones referred to as androgens, which are also known of as anabolic steroids. As a steroid hormone, testosterone is derived from cholesterol and the structure of this hormone is similar across all mammals, reptiles, birds and fish.
Associated morbidity may include various other male sexual dysfunctions, such as premature (early) ejaculation and male hypoactive sexual desire disorder. The NHSLS found that 28.5% of men aged 18-59 years reported premature ejaculation, and 15.8% lacked sexual interest during the past year. An additional 17% reported anxiety about sexual performance, and 8.1% had a lack of pleasure in sex. [51]

Testosterone belongs to a class of male hormones called androgens, which are sometimes called steroids or anabolic steroids. In men, testosterone is produced mainly in the testes, with a small amount made in the adrenal glands. The brain's hypothalamus and pituitary gland control testosterone production. The hypothalamus instructs the pituitary gland on how much testosterone to produce, and the pituitary gland passes the message on to the testes. These communications happen through chemicals and hormones in the bloodstream.
Qaseem, A., Snow, V., Denberg, T. D., Casey, D. E., Forciea, M. A., Owens, D. K., & Shekelle, P. (2009). Hormonal testing and pharmacologic treatment of erectile dysfunction: A clinical practice guideline from the American College of Physicians. Annals of internal medicine, 151(9), 639-649. Retrieved from http://annals.org/aim/article/745155/hormonal-testing-pharmacologic-treatment-erectile-dysfunction-clinical-practice-guideline-from
One study examined the role of testosterone supplementation in hypogonadal men with ED. These men were considered nonresponders to sildenafil, and their erections were monitored by assessing nocturnal penile tumescence (NPT). After these men were given testosterone transdermally for 6 months, the number of NPTs increased, as did the maximum rigidity with sildenafil. [18] This study suggests that a certain level of testosterone may be necessary for PDE5 inhibitors to function properly.
In males, the majority of testosterone is secreted from the testes, hence the term “testosterone”. The hormone is also produced in small amounts by the adrenal gland. The production of this hormone is controlled by the hypothalamus and pituitary gland in the brain. The pituitary gland receives instructions from the hypothalamus on how much testosterone needs producing and passes this information onto the testicles via chemicals and hormones circulating in the bloodstream.

A.D.A.M., Inc. is accredited by URAC, also known as the American Accreditation HealthCare Commission (www.urac.org). URAC's accreditation program is an independent audit to verify that A.D.A.M. follows rigorous standards of quality and accountability. A.D.A.M. is among the first to achieve this important distinction for online health information and services. Learn more about A.D.A.M.'s editorial policy, editorial process and privacy policy. A.D.A.M. is also a founding member of Hi-Ethics and subscribes to the principles of the Health on the Net Foundation (www.hon.ch).
×