Transdermal preparations of testosterone utilize the fact that the skin readily absorbs steroid hormones. Initial transdermal preparations took the form of scrotal patches with testosterone loaded on to a membranous patch. Absorption from the scrotal skin was particularly good and physiological levels of testosterone with diurnal variation were reliably attained. The scrotal patches are now rarely used because they require regular shaving or clipping of scrotal hair and because they produce rather high levels of dihydrotestosterone compared to testosterone (Behre et al 1999). Subsequently, non-scrotal patches were developed but the absorptive capacity of non-scrotal skin is much lower, so these patches contain additional chemicals which enhance absorption. The non-scrotal skin patches produce physiological testosterone levels without supraphysiological dihydrotestosterone levels. Unfortunately, the patches produce a high rate of local skin reactions often leading to discontinuation (Parker and Armitage 1999). In the last few years, transdermal testosterone gel preparations have become available. These require daily application by patients and produce steady state physiological testosterone levels within a few days in most patients (Swerdloff et al 2000; Steidle et al 2003). The advantages compared with testosterone patches include invisibility, reduced skin irritation and the ability to adjust dosage, but concerns about transfer to women and children on close skin contact necessitate showering after application or coverage with clothes.
The dorsal artery provides for engorgement of the glans during erection, whereas the bulbourethral artery supplies the bulb and the corpus spongiosum. The cavernous artery effects tumescence of the corpus cavernosum and thus is principally responsible for erection. The cavernous artery gives off many helicine arteries, which supply the trabecular erectile tissue and the sinusoids. These helicine arteries are contracted and tortuous in the flaccid state and become dilated and straight during erection. [9]
Studies have demonstrated reduced testosterone levels in men with heart failure as well as other endocrine changes (Tappler and Katz 1979; Kontoleon et al 2003). Treatment of cardiac failure with chronic mechanical circulatory support normalizes many of these changes, including testosterone levels (Noirhomme et al 1999). More recently, two double-blind randomized controlled trials of testosterone treatment for men with low or low-normal serum testosterone levels and heart failure have shown improvements in exercise capacity and symptoms (Pugh et al 2004; Malkin et al 2006). The mechanism of these benefits is currently unclear, although a study of the acute effects of buccal testosterone given to men with chronic cardiac failure under invasive monitoring showed that testosterone increased cardiac index and reduced systemic vascular resistance (Pugh et al 2003). Testosterone may prove useful in the management of cardiac failure but further research is needed.

A common and important cause of ED is vasculogenic. Many men with ED have comorbid conditions such as hyperlipidemia, hypercholesterolemia, tobacco abuse, diabetes mellitus, or coronary artery disease (CAD). [6] The Princeton III Consensus recommends screening men who present with ED for cardiovascular risk factors; ED may be the earliest presentation of atherosclerosis and vascular disease. [7]


When a man becomes sexually excited, muscles in their penis relax. This relaxation allows for increased blood flow through the penile arteries. This blood fills two chambers inside the penis called the corpora cavernosa. As the chambers fill with blood, the penis grows rigid. Erection ends when the muscles contract and the accumulated blood can flow out through the penile veins.
^ Jump up to: a b Sapienza P, Zingales L, Maestripieri D (September 2009). "Gender differences in financial risk aversion and career choices are affected by testosterone". Proceedings of the National Academy of Sciences of the United States of America. 106 (36): 15268–73. Bibcode:2009PNAS..10615268S. doi:10.1073/pnas.0907352106. PMC 2741240. PMID 19706398.
Psychosocial problems are important and may cause erectile dysfunction by themselves or together with other causes of erectile dysfunction, such as diabetes and heart disease. Relationships are complicated and many factors cause tensions, which can affect sexual relations. For some men, these problems can become ongoing and it can help to talk through the issue with a skilled counsellor. It is important to know that the longer erectile dysfunction is left untreated, the greater the effect on relationships. This is another reason why early treatment of erectile dysfunction is important.
^ Mehta PH, Jones AC, Josephs RA (Jun 2008). "The social endocrinology of dominance: basal testosterone predicts cortisol changes and behavior following victory and defeat" (PDF). Journal of Personality and Social Psychology. 94 (6): 1078–93. CiteSeerX 10.1.1.336.2502. doi:10.1037/0022-3514.94.6.1078. PMID 18505319. Archived from the original (PDF) on April 19, 2009.

Due to the risk of hypotension, caution should be used in patients using alpha blockers for prostate hyperplasia and patients using other antihypertensive medications and alpha blockers, which should not be co-administered with PDE5 inhibitors. In patients who take 50 mg of sildenafil or more and use alpha blockers, sildenafil dosing should be avoided for at least 4 hours after the dose of the alpha blocker. In patients who take 25 mg of sildenafil, use of any alpha blockers is considered safe.

In addition to conjugation and the 17-ketosteroid pathway, testosterone can also be hydroxylated and oxidized in the liver by cytochrome P450 enzymes, including CYP3A4, CYP3A5, CYP2C9, CYP2C19, and CYP2D6.[151] 6β-Hydroxylation and to a lesser extent 16β-hydroxylation are the major transformations.[151] The 6β-hydroxylation of testosterone is catalyzed mainly by CYP3A4 and to a lesser extent CYP3A5 and is responsible for 75 to 80% of cytochrome P450-mediated testosterone metabolism.[151] In addition to 6β- and 16β-hydroxytestosterone, 1β-, 2α/β-, 11β-, and 15β-hydroxytestosterone are also formed as minor metabolites.[151][152] Certain cytochrome P450 enzymes such as CYP2C9 and CYP2C19 can also oxidize testosterone at the C17 position to form androstenedione.[151]
In rare cases, the drug Viagra ® can cause blue-green shading to vision that lasts for a short time. In rare cases, the drug Cialis® can cause or increase back pain or aching muscles in the back. In most cases, the side effects are linked to PDE5 inhibitor effects on other tissues in the body, meaning they are working to increase blood flow to your penis and at the same time impacting other vascular tissues in your body. These are not ‘allergic reactions'.
When females have a higher baseline level of testosterone, they have higher increases in sexual arousal levels but smaller increases in testosterone, indicating a ceiling effect on testosterone levels in females. Sexual thoughts also change the level of testosterone but not level of cortisol in the female body, and hormonal contraceptives may affect the variation in testosterone response to sexual thoughts.[51]
Several treatments were promoted in the pre-PGE1, pre-prostaglandin era, including yohimbine, trazodone, testosterone, and various herbal remedies. None of these is currently recommended under the updated American Urological Association Guidelines for the Treatment of Erectile Dysfunction.15 Testosterone supplementation is only recommended for men with low testosterone levels.
The mechanism of age related decreases in serum testosterone levels has also been the subject of investigation. Metabolic clearance declines with age but this effect is less pronounced than a reduction in testosterone production, so the overall effect is to reduce serum testosterone levels. Gonadotrophin levels rise during aging (Feldman et al 2002) and testicular secretory responses to recombinant human chorionic gonadotrophin (hCG) are reduced (Mulligan et al 1999, 2001). This implies that the reduced production may be caused by primary testicular failure but in fact these changes are not adequate to fully explain the fall in testosterone levels. There are changes in the lutenising hormone (LH) production which consist of decreased LH pulse frequency and amplitude, (Veldhuis et al 1992; Pincus et al 1997) although pituitary production of LH in response to pharmacological stimulation with exogenous GnRH analogues is preserved (Mulligan et al 1999). It therefore seems likely that there are changes in endogenous production of GnRH which underlie the changes in LH secretion and have a role in the age related decline in testosterone. Thus the decreases in testosterone levels with aging seem to reflect changes at all levels of the hypothalamic-pituitary-testicular axis. With advancing age there is also a reduction in androgen receptor concentration in some target tissues and this may contribute to the clinical syndrome of LOH (Ono et al 1988; Gallon et al 1989).
Regular exercise for about 20 to 30 minutes a day may act as a libido enhancer and certainly will improve your overall health. "Exercising improves blood flow to all areas of your body and that includes the pelvic region where the blood vessels needed for sexual functioning are located," says Feloney. Some other ways that regular exercise can improve your sexual performance include building up your stamina, lowering your blood pressure, relieving stress, and helping you look and feel better.
The reliable measurement of serum free testosterone requires equilibrium dialysis. This is not appropriate for clinical use as it is very time consuming and therefore expensive. The amount of bioavailable testosterone can be measured as a percentage of the total testosterone after precipitation of the SHBG bound fraction using ammonium sulphate. The bioavailable testosterone is then calculated from the total testosterone level. This method has an excellent correlation with free testosterone (Tremblay and Dube 1974) but is not widely available for clinical use. In most clinical situations the available tests are total testosterone and SHBG which are both easily and reliably measured. Total testosterone is appropriate for the diagnosis of overt male hypogonadism where testosterone levels are very low and also in excluding hypogonadism in patients with normal/high-normal testosterone levels. With increasing age, a greater number of men have total testosterone levels just below the normal range or in the low-normal range. In these patients total testosterone can be an unreliable indicator of hypogonadal status. There are a number of formulae that calculate an estimated bioavailable or free testosterone level using the SHBG and total testosterone levels. Some of these have been shown to correlate well with laboratory measures and there is evidence that they more reliably indicate hypogonadism than total testosterone in cases of borderline biochemical hypogonadism (Vermeulen et al 1971; Morris et al 2004). It is important that such tests are validated for use in patient populations relevant to the patient under consideration.
The other interesting thing about the study: men’s testosterone levels were lowest in March (at the end of winter) and highest in August (at the end of summer). Sunlight affects your vitamin D production, so you have seasonal dips and peaks. Get a blood test to check your levels, and if you’re low, take a high-quality vitamin D3 supplement. If you’re going to take D3, take vitamin K2 and vitamin A with it. The three work in sync, so you want them all to be balanced. Here are my dosage recommendations.
Testosterone belongs to a class of male hormones called androgens, which are sometimes called steroids or anabolic steroids. In men, testosterone is produced mainly in the testes, with a small amount made in the adrenal glands. The brain's hypothalamus and pituitary gland control testosterone production. The hypothalamus instructs the pituitary gland on how much testosterone to produce, and the pituitary gland passes the message on to the testes. These communications happen through chemicals and hormones in the bloodstream.

Your doctor will ask you questions about your symptoms and health history. They may do tests to determine if your symptoms are caused by an underlying condition. You should expect a physical exam where your doctor will listen to your heart and lungs, check your blood pressure, and examine your testicles and penis. They may also recommend a rectal exam to check your prostate. Additionally, you may need blood or urine tests to rule out other conditions.
This is one of the most controversial recommendations I make, but it shouldn’t be. It’s no different than using thyroid medication. If your levels are low, and the other techniques here don’t work, use TRT. You will like your life again. If your levels are low, bioidentical testosterone will make you live longer and better, provided you use it right.
Some anti-aging physicians also use sublingual ( taken under the tongue) forms of non-bioidentical testosterone like oxandrolone. I took oxandrolone with a physician’s guidance for about two weeks, and I got pimples and hair loss. I quit and was bummed that it didn’t generate enough impact to write a blog post about it. I have continued to recommend bioidentical testosterone since.
Testosterone is only one of many factors that influence aggression and the effects of previous experience and environmental stimuli have been found to correlate more strongly. A few studies indicate that the testosterone derivative estradiol (one form of estrogen) might play an important role in male aggression.[66][67][68][69] Studies have also found that testosterone facilitates aggression by modulating vasopressin receptors in the hypothalamus.[70]
There are many effective treatments for impotence. The most popular is a class of drugs called phosphodiesterase type 5 (PDE5) inhibitors. These include sildenafil (Viagra), vardenafil (Levitra), tadalafil (Cialis) and avanafil (STENDRA). These drugs are taken in pill form. They work in most men. But they are less effective in men with neurological causes of impotence.
There is a negative correlation of testosterone levels with plasminogen activator inhibitor-1 (PAI-1) (Glueck et al 1993; Phillips 1993), which is a major prothrombotic factor and known to be associated with progression of atherosclerosis, as well as other prothrombotic factors fibrinogen, α2-antiplasmin and factor VII (Bonithon-Kopp et al 1988; Glueck et al 1993; Phillips 1993; De Pergola et al 1997). There is a positive correlation with tissue plasminogen activator (tPA) which is one of the major fibrinolytic agents (Glueck et al 1993). Interventional trials have shown a neutral effect of physiological testosterone replacement on the major clotting factors (Smith et al 2005) but supraphysiological androgen administration can produce a temporary mild pro-coagulant effect (Anderson et al 1995).

The association between low testosterone and ED is not entirely clear. Although these 2 processes certainly overlap in some instances, they are distinct entities. Some 2-21% of men have both hypogonadism and ED; however, it is unclear to what degree treating the former will improve erectile function. [17] About 35-40% of men with low testosterone see an improvement in their erections with testosterone replacement; however, almost 65% of these men see no improvement. [15]
ICI therapy often produces a reliable erection, which comes down after 20-30 minutes or with climax. Since the ICI erection is not regulated by your penile nerves, you should not be surprised if the erection lasts after orgasm. The most common side effect of ICI therapy is a prolonged erection. Prolonged erections (>1 hour) can be reversed by a second injection (antidote) in the office.
Present in much greater levels in men than women, testosterone initiates the development of the male internal and external reproductive organs during foetal development and is essential for the production of sperm in adult life. This hormone also signals the body to make new blood cells, ensures that muscles and bones stay strong during and after puberty and enhances libido both in men and women. Testosterone is linked to many of the changes seen in boys during puberty (including an increase in height, body and pubic hair growth, enlargement of the penis, testes and prostate gland, and changes in sexual and aggressive behaviour). It also regulates the secretion of luteinising hormone and follicle stimulating hormone. To effect these changes, testosterone is often converted into another androgen called dihydrotestosterone. 

Everything you need to know about chlamydia Chlamydia is the most common STI in the United States, yet most people do not experience obvious symptoms. Chlamydia affects men and women and can harm the reproductive systems, sometimes permanently. Find out about the causes and symptoms of chlamydia, as well as what the best treatments are and how to get screened. Read now
If you have low testosterone, your functional medicine or anti-aging physician will help you diagnose it. There are several different hormones your physician should measure, but the most important two are your free testosterone and estrogen levels, because converting too much testosterone to estrogen is a problem that’s different from not making enough testosterone in the first place. In my case, I wasn’t making very much testosterone, and what I was making my body converted to estrogen way too effectively.
Causes of impotence are many and include heart disease, high cholesterol, high blood pressure, obesity, metabolic syndrome, Parkinson's disease, Peyronie's disease, substance abuse, sleep disorders, BPH treatments, relationship problems, blood vessel diseases (such as peripheral vascular disease and others), systemic disease, hormonal imbalance, and medications (such as blood pressure and heart medications).
Erectile dysfunction, also known as ED or impotence, is the inability to attain or maintain an erection of the penis adequate for the sexual satisfaction of both partners. It can be devastating to the self-esteem of a man and of his partner. As many as 30 million American men are afflicted on a continuing basis, and transient episodes affect nearly all adult males. But nearly all men who seek treatment find some measure of relief.

This inflatable penile prosthesis has 3 major components. The 2 cylinders are placed within the corpora cavernosa, a reservoir is placed beneath the rectus muscle, and the pump is placed in the scrotum. When the pump is squeezed, fluid from the reservoir is transferred into the 2 cylinders, producing a firm erection. The deflation mechanism is also located on the pump and differs by manufacturer.
A large number of side-effects have been attributed to testosterone. In our clinical experience, the incidence of significant adverse effects with treatment producing physiological testosterone levels is low, and many side effects attributed to testosterone are mainly relevant to supraphysiological replacement. Some adverse effects are specific to a given mode of delivery and have already been described. Potential adverse effects concerning the prostate have also been discussed and require appropriate monitoring of symptoms, PSA and digital rectal examination. Other tumors which may be androgen responsive include cancer of the breast and primary liver tumors, and these are both contraindications to testosterone treatment
It seems that adequate testosterone levels are an important influence on sexual symptoms in the aging male and also influence the response of men to PDE-5 inhibitors, the first line treatment for erectile dysfunction in men. Many would now suggest screening for testosterone deficiency in all men presenting with erectile dysfunction (Gore and Rajfer 2004; Shabsigh 2005). This would seem appropriate because, in addition to benefits on sexual function, identification and treatment of hypogonadal men with testosterone could improve other symptoms of hypogonadism and protect against other conditions such as osteoporosis.
Hacking your testosterone influences everything from body composition to energy levels to mood. It’s easy to eat more butter; it’s hard to visit a doctor and get tested, but that’s what I recommend: know your levels. If you’re 25, you’ll know what your target is when you’re 35. By the time you’ve noticed symptoms of low testosterone, it’s too late to get your “normal” measurements!
The participants were seen every 4 weeks. Blood was taken to measure hormone levels, and questionnaires were given to assess physical function, health status, vitality, and sexual function. Body fat and muscle measurements were also taken at the beginning and end of the 16 weeks. The study was funded in part by NIH’s National Institute on Aging (NIA) and National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK). Results appeared in the September 12, 2013, issue of the New England Journal of Medicine.
All NOS subtypes produce NO, but each may play a different biologic role in various tissues. nNOS and eNOS are considered constitutive forms because they share biochemical features: They are calcium-dependent, they require calmodulin and reduced nicotinamide adenine dinucleotide phosphate for catalytic activity, and they are competitively inhibited by arginine derivatives. nNOS is involved in the regulation of neurotransmission, and eNOS is involved in the regulation of blood flow.
Like other steroid hormones, testosterone is derived from cholesterol (see figure).[120] The first step in the biosynthesis involves the oxidative cleavage of the side-chain of cholesterol by cholesterol side-chain cleavage enzyme (P450scc, CYP11A1), a mitochondrial cytochrome P450 oxidase with the loss of six carbon atoms to give pregnenolone. In the next step, two additional carbon atoms are removed by the CYP17A1 (17α-hydroxylase/17,20-lyase) enzyme in the endoplasmic reticulum to yield a variety of C19 steroids.[121] In addition, the 3β-hydroxyl group is oxidized by 3β-hydroxysteroid dehydrogenase to produce androstenedione. In the final and rate limiting step, the C17 keto group androstenedione is reduced by 17β-hydroxysteroid dehydrogenase to yield testosterone.
Several pathways have been described to explain how information travels from the hypothalamus to the sacral autonomic centers. One pathway travels from the dorsomedial hypothalamus through the dorsal and central gray matter, descends to the locus ceruleus, and projects ventrally in the mesencephalic reticular formation. Input from the brain is conveyed through the dorsal spinal columns to the thoracolumbar and sacral autonomic nuclei. 

It may also become a treatment for anemia, bone density and strength problems. In a 2017 study published in the journal of the American Medical Association (JAMA), testosterone treatments corrected anemia in older men with low testosterone levels better than a placebo. Another 2017 study published in JAMA found that older men with low testosterone had increased bone strength and density after treatment when compared with a placebo. 
Attention, memory, and spatial ability are key cognitive functions affected by testosterone in humans. Preliminary evidence suggests that low testosterone levels may be a risk factor for cognitive decline and possibly for dementia of the Alzheimer's type,[100][101][102][103] a key argument in life extension medicine for the use of testosterone in anti-aging therapies. Much of the literature, however, suggests a curvilinear or even quadratic relationship between spatial performance and circulating testosterone,[104] where both hypo- and hypersecretion (deficient- and excessive-secretion) of circulating androgens have negative effects on cognition.
Additionally, the physiologic processes involving erections begin at the genetic level. Certain genes become activated at critical times to produce proteins vital to sustaining this pathway. Some researchers have focused on identifying particular genes that place men at risk for ED. At present, these studies are limited to animal models, and little success has been reported to date. [4] Nevertheless, this research has given rise to many new treatment targets and a better understanding of the entire process.
Chronic stress dumps adrenaline in your system multiple times a day. And that can lead to high blood pressure, heart disease, obesity, and diabetes. Chronic stress is like red-lining your car all day long. When you drive 100 mph all the time, something is going to break down. A high-stress environment can actually change the way your brain sends messages to your body. Dumping too much adrenaline into your bloodstream can affect blood flow and severely limit your ability to achieve and maintain an erection.
^ Jump up to: a b Lazaridis I, Charalampopoulos I, Alexaki VI, Avlonitis N, Pediaditakis I, Efstathopoulos P, Calogeropoulou T, Castanas E, Gravanis A (2011). "Neurosteroid dehydroepiandrosterone interacts with nerve growth factor (NGF) receptors, preventing neuronal apoptosis". PLoS Biol. 9 (4): e1001051. doi:10.1371/journal.pbio.1001051. PMC 3082517. PMID 21541365. 

Epidemiological data has associated low testosterone levels with atherogenic lipid parameters, including lower HDL cholesterol (Lichtenstein et al 1987; Haffner et al 1993; Van Pottelbergh et al 2003) and higher total cholesterol (Haffner et al 1993; Van Pottelbergh et al 2003), LDL cholesterol (Haffner et al 1993) and triglyceride levels (Lichtenstein et al 1987; Haffner et al 1993). Furthermore, these relationships are independent of other factors such as age, obesity and glucose levels (Haffner et al 1993; Van Pottelbergh et al 2003). Interventional trails of testosterone replacement have shown that treatment causes a decrease in total cholesterol. A recent meta-analysis of 17 randomized controlled trials confirmed this and found that the magnitude of changes was larger in trials of patients with lower baseline testosterone levels (Isidori et al 2005). The same meta-analysis found no significant overall change in LDL or HDL cholesterol levels but in trials with baseline testosterone levels greater than 10 nmol/l, there was a small reduction in HDL cholesterol with testosterone treatment.
×