Findings that improvements in serum glucose, serum insulin, insulin resistance or glycemic control, in men treated with testosterone are accompanied by reduced measures of central obesity, are in line with other studies showing a specific effect of testosterone in reducing central or visceral obesity (Rebuffe-Scrive et al 1991; Marin, Holmang et al 1992). Furthermore, studies that have shown neutral effects of testosterone on glucose metabolism have not measured (Corrales et al 2004), or shown neutral effects (Lee et al 2005) (Tripathy et al 1998; Bhasin et al 2005) on central obesity. Given the known association of visceral obesity with insulin resistance, it is possible that testosterone treatment of hypogonadal men acts to improve insulin resistance and diabetes through an effect in reducing central obesity. This effect can be explained by the action of testosterone in inhibiting lipoprotein lipase and thereby reducing triglyceride uptake into adipocytes (Sorva et al 1988), an action which seems to occur preferentially in visceral fat (Marin et al 1995; Marin et al 1996). Visceral fat is thought to be more responsive to hormonal changes due to a greater concentration of androgen receptors and increased vascularity compared with subcutaneous fat (Bjorntorp 1996). Further explanation of the links between hypogonadism and obesity is offered by the hypogonadal-obesity-adipocytokine cycle hypothesis (see Figure 1). In this model, increases in body fat lead to increases in aromatase levels, in addition to insulin resistance, adverse lipid profiles and increased leptin levels. Increased action of aromatase in metabolizing testosterone to estrogen, reduces testosterone levels which induces further accumulation of visceral fat. Higher leptin levels and possibly other factors, act at the pituitary to suppress gonadotrophin release and exacerbate hypogonadism (Cohen 1999; Kapoor et al 2005). Leptin has also been shown to reduce testosterone secretion from rodent testes in vitro (Tena-Sempere et al 1999). A full review of the relationship between testosterone, insulin resistance and diabetes can be found elsewhere (Kapoor et al 2005; Jones 2007).
There are risks to prosthetic surgery and patients are counselled before the procedure. If there is a post-operative infection, the implant will likely be removed. The devices are reliable, but in the case of mechanical malfunction, the device or a part of the device will need to be replaced surgically. If a penile prosthesis is removed, other non-surgical treatments may no longer work.
The physical side effects of chemotherapy are usually temporary and resolve within one to two weeks after stopping the chemotherapy. However, chemotherapy agents, such as Ciplatin or Vincristine, may interfere with the nerves that control erection leading to possible impotence. Make sure you discuss potential side effects of cancer chemotherapy with your doctor or healthcare provider.
Several pathways have been described to explain how information travels from the hypothalamus to the sacral autonomic centers. One pathway travels from the dorsomedial hypothalamus through the dorsal and central gray matter, descends to the locus ceruleus, and projects ventrally in the mesencephalic reticular formation. Input from the brain is conveyed through the dorsal spinal columns to the thoracolumbar and sacral autonomic nuclei.

The mechanism of age related decreases in serum testosterone levels has also been the subject of investigation. Metabolic clearance declines with age but this effect is less pronounced than a reduction in testosterone production, so the overall effect is to reduce serum testosterone levels. Gonadotrophin levels rise during aging (Feldman et al 2002) and testicular secretory responses to recombinant human chorionic gonadotrophin (hCG) are reduced (Mulligan et al 1999, 2001). This implies that the reduced production may be caused by primary testicular failure but in fact these changes are not adequate to fully explain the fall in testosterone levels. There are changes in the lutenising hormone (LH) production which consist of decreased LH pulse frequency and amplitude, (Veldhuis et al 1992; Pincus et al 1997) although pituitary production of LH in response to pharmacological stimulation with exogenous GnRH analogues is preserved (Mulligan et al 1999). It therefore seems likely that there are changes in endogenous production of GnRH which underlie the changes in LH secretion and have a role in the age related decline in testosterone. Thus the decreases in testosterone levels with aging seem to reflect changes at all levels of the hypothalamic-pituitary-testicular axis. With advancing age there is also a reduction in androgen receptor concentration in some target tissues and this may contribute to the clinical syndrome of LOH (Ono et al 1988; Gallon et al 1989).
In the hepatic 17-ketosteroid pathway of testosterone metabolism, testosterone is converted in the liver by 5α-reductase and 5β-reductase into 5α-DHT and the inactive 5β-DHT, respectively.[1][147] Then, 5α-DHT and 5β-DHT are converted by 3α-HSD into 3α-androstanediol and 3α-etiocholanediol, respectively.[1][147] Subsequently, 3α-androstanediol and 3α-etiocholanediol are converted by 17β-HSD into androsterone and etiocholanolone, which is followed by their conjugation and excretion.[1][147] 3β-Androstanediol and 3β-etiocholanediol can also be formed in this pathway when 5α-DHT and 5β-DHT are acted upon by 3β-HSD instead of 3α-HSD, respectively, and they can then be transformed into epiandrosterone and epietiocholanolone, respectively.[149][150] A small portion of approximately 3% of testosterone is reversibly converted in the liver into androstenedione by 17β-HSD.[148]
"Smoking is a short- and long-term cause of erectile dysfunction," warns Feloney. "In the short-term nicotine constricts the blood vessels that you need to get an erection, and in the long-term nicotine contributes to hardening of the arteries that can cause erectile dysfunction." Some approaches for quitting include making a clean break, avoiding the triggers of smoking, trying a nicotine patch or gum, and joining a smoke cessation program.

Important future developments will include selective androgen receptor modulators (SARMs). These drugs will be able to produce isolated effects of testosterone at androgen receptors. They are likely to become useful clinical drugs, but their initial worth may lie in facilitating research into the relative importance of testosterone’s action at the androgen receptor compared to at other sites or after conversion to other hormones. Testosterone will remain the treatment of choice for late onset hypogonadism for some time to come.
show that total testosterone levels increase after exercising, especially after resistance training. Low testosterone levels can affect your sex drive and your mood. The good news is that exercise improves mood and stimulates brain chemicals to help you feel happier and more confident. Exercise also boosts energy and endurance, and helps you to sleep better. Fitness experts recommend 30 minutes of exercise every day.
There's the rub, so to speak. Recalling the cautionary lessons learned about sex steroid hormone therapy in postmenopausal women from theWomen's Health Initiative, Dr. Brad Anawalt wrote in the Journal of Clinical Endocrinology and Metabolism, "We are threatened with a reprise of promiscuous prescription of sex steroid hormone therapy in aging men, obese men, diabetic men, and other groups of men with a high prevalence of low serum androgen levels. We are threatened with a mad 'T' party."
Once a complete sexual and medical history has been completed, appropriate laboratory studies should be conducted. In the initial evaluation of ED, sophisticated laboratory testing is rarely necessary. For example, serum testosterone (and sometimes prolactin) is typically only useful when the patient demonstrates hypogonadal features or testicular atrophy, or when clinical history is suggestive. Additional hormonal evaluation may include thyroid stimulating hormone in those with a clinical suspicion of hypothyroidism or appropriate diabetes screening in those presenting with a concern for impaired glucose metabolism. If the patient has not been evaluated with a lipid panel and hyperlipidemia is suspected, measurement and appropriate referral to internal medicine or cardiology is recommended. In most cases, a tentative diagnosis can be established with a complete sexual and medical history, physical examination, and limited or no laboratory testing.
Cardiovascular disease, and its underlying pathological process atherosclerosis, is an important cause of morbidity and mortality in the developed and developing world. Coronary heart disease in particular is the commonest cause of death worldwide (AHA 2002; MacKay and Mensah 2004). As well as increasing with age, this disease is more common in the male versus female population internationally, which has led to interest in the potential role of sex hormones in modulating risk of development of atherosclerosis. Concerns about the potential adverse effects of testosterone treatment on cardiovascular disease have previously contributed to caution in prescribing testosterone to those who have, or who are at risk of, cardiovascular disease. Contrary to fears of the potential adverse effects of testosterone on cardiovascular disease, there are over forty epidemiological studies which have examined the relationship of testosterone levels to the presence or development of coronary heart disease, and none have shown a positive correlation. Many of these studies have found the presence of coronary heart disease to be associated with low testosterone levels (Reviews: Jones, Jones et al 2003; Jones et al 2005).
The link between chronic disease and ED is most striking for diabetes. Men who have diabetes are two to three times more likely to have erectile dysfunction than men who do not have diabetes. Among men with erectile dysfunction, those with diabetes may experience the problem as much as 10 to 15 years earlier than men without diabetes. Yet evidence shows that good blood sugar control can minimize this risk. Other conditions that may cause ED include cardiovascular disease, atherosclerosis (hardening of the arteries), kidney disease, and multiple sclerosis. These illnesses can impair blood flow or nerve impulses throughout the body.
Once a complete sexual and medical history has been completed, appropriate laboratory studies should be conducted. In the initial evaluation of ED, sophisticated laboratory testing is rarely necessary. For example, serum testosterone (and sometimes prolactin) is typically only useful when the patient demonstrates hypogonadal features or testicular atrophy, or when clinical history is suggestive. Additional hormonal evaluation may include thyroid stimulating hormone in those with a clinical suspicion of hypothyroidism or appropriate diabetes screening in those presenting with a concern for impaired glucose metabolism. If the patient has not been evaluated with a lipid panel and hyperlipidemia is suspected, measurement and appropriate referral to internal medicine or cardiology is recommended. In most cases, a tentative diagnosis can be established with a complete sexual and medical history, physical examination, and limited or no laboratory testing.
Performance anxiety can be another cause of impotence. If a person wasn’t able to achieve an erection in the past, he may fear he won’t be able to achieve an erection in the future. A person may also find he can’t achieve an erection with a certain partner. Someone with ED related to performance anxiety may be able to have full erections when masturbating or when sleeping, yet he isn’t able to maintain an erection during intercourse.
The main surgical treatment of ED involves insertion of a penile implant (also called penile prostheses). Because penile vascular surgery is not recommended for aging males who have failed oral PDE5 inhibitors, ICI or IU therapies, implants are the next step for these patients. Although placement of a penile implant is a surgery which carries risks, they have the highest rates of success and satisfaction among ED treatment options.
This post can absolutely change your life, and probably help you avoid some pitfalls. Like shrunken balls. (I am not an expert in the synthetic anabolic testosterone drugs used by bodybuilders — they carry lots of risks but pack a big punch if you want to get swole. Bulletproof is all about having massive clean energy, looking good, and living a very long time…so anabolic steroids aren’t on my roadmap.)
Cross-sectional studies conducted at the time of diagnosis of BPH have failed to show consistent differences in testosterone levels between patients and controls. A prospective study also failed to demonstrate a correlation between testosterone and the development of BPH (Gann et al 1995). Clinical trials have shown that testosterone treatment of hypogonadal men does cause growth of the prostate, but only to the size seen in normal men, and also causes a small increase in prostate specific antigen (PSA) within the normal range (Rhoden and Morgentaler 2005). Despite growth of the prostate a number of studies have failed to detect any adverse effects on symptoms of urinary obstruction or physiological measurements such as flow rates and residual volumes (Snyder et al 1999; Kenny et al 2000, 2001). Despite the lack of evidence linking symptoms of BPH to testosterone treatment, it remains important to monitor for any new or deteriorating problems when commencing patients on testosterone treatment, as the small growth of prostate tissue may adversely affect a certain subset of individuals.
×