The regulation of testosterone production is tightly controlled to maintain normal levels in blood, although levels are usually highest in the morning and fall after that. The hypothalamus and the pituitary gland are important in controlling the amount of testosterone produced by the testes. In response to gonadotrophin-releasing hormone from the hypothalamus, the pituitary gland produces luteinising hormone which travels in the bloodstream to the gonads and stimulates the production and release of testosterone.
The largest amounts of testosterone (>95%) are produced by the testes in men,[2] while the adrenal glands account for most of the remainder. Testosterone is also synthesized in far smaller total quantities in women by the adrenal glands, thecal cells of the ovaries, and, during pregnancy, by the placenta.[122] In the testes, testosterone is produced by the Leydig cells.[123] The male generative glands also contain Sertoli cells, which require testosterone for spermatogenesis. Like most hormones, testosterone is supplied to target tissues in the blood where much of it is transported bound to a specific plasma protein, sex hormone-binding globulin (SHBG).

Important future developments will include selective androgen receptor modulators (SARMs). These drugs will be able to produce isolated effects of testosterone at androgen receptors. They are likely to become useful clinical drugs, but their initial worth may lie in facilitating research into the relative importance of testosterone’s action at the androgen receptor compared to at other sites or after conversion to other hormones. Testosterone will remain the treatment of choice for late onset hypogonadism for some time to come.
Penile erection is managed by two mechanisms: the reflex erection, which is achieved by directly touching the penile shaft, and the psychogenic erection, which is achieved by erotic or emotional stimuli. The former uses the peripheral nerves and the lower parts of the spinal cord, whereas the latter uses the limbic system of the brain. In both cases, an intact neural system is required for a successful and complete erection. Stimulation of the penile shaft by the nervous system leads to the secretion of nitric oxide (NO), which causes the relaxation of smooth muscles of corpora cavernosa (the main erectile tissue of penis), and subsequently penile erection. Additionally, adequate levels of testosterone (produced by the testes) and an intact pituitary gland are required for the development of a healthy erectile system. As can be understood from the mechanisms of a normal erection, impotence may develop due to hormonal deficiency, disorders of the neural system, lack of adequate penile blood supply or psychological problems.[18] Spinal cord injury causes sexual dysfunction including ED. Restriction of blood flow can arise from impaired endothelial function due to the usual causes associated with coronary artery disease, but can also be caused by prolonged exposure to bright light.
Testosterone is an androgen hormone produced by the adrenal cortex, the testes (in men), and the ovaries (in women). It is often considered the primary male sex hormone. Testosterone stimulates the development of male secondary sex characteristics (like body hair and muscle growth) and is essential in the production of sperm. In women, testosterone plays a role in egg development and ovulation.
The other component of that study is that the subjects ate much less saturated fat. Saturated fats are common in meat, butter, and coconut products, and they’re crucial for your body to function. Saturated fats keep the integrity of your cell membranes, and if you limit carbs and/or do Bulletproof Intermittent Fasting, saturated fats become a phenomenal source of energy for your brain.
Testosterone is the primary sex hormone in men, and it is responsible for the development of many of the physical characteristics that are considered typically male. Women also produce the hormone in much smaller amounts. Testosterone, part of a hormone class known as androgens, is produced by the testicles after stimulation by the pituitary gland, which is located near the base of the brain, and it sends signals to a male's testicles (or to a woman's ovaries) that spark feelings of sexual desire. (1)

An international consensus document was recently published and provides guidance on the diagnosis, treatment and monitoring of late-onset hypogonadism (LOH) in men. The diagnosis of LOH requires biochemical and clinical components. Controversy in defining the clinical syndrome continues due to the high prevalence of hypogonadal symptoms in the aging male population and the non-specific nature of these symptoms. Further controversy surrounds setting a lower limit of normal testosterone, the limitations of the commonly available total testosterone result in assessing some patients and the unavailability of reliable measures of bioavailable or free testosterone for general clinical use. As with any clinical intervention testosterone treatment should be judged on a balance of risk versus benefit. The traditional benefits of testosterone on sexual function, mood, strength and quality of life remain the primary goals of treatment but possible beneficial effects on other parameters such as bone density, obesity, insulin resistance and angina are emerging and will be reviewed. Potential concerns regarding the effects of testosterone on prostate disease, aggression and polycythaemia will also be addressed. The options available for treatment have increased in recent years with the availability of a number of testosterone preparations which can reliably produce physiological serum concentrations.

Sugar is to testosterone what kryptonite is to Superman. Eliminating sugar is probably the single most powerful way to increase your performance, in part because sugar absolutely devastates your testosterone levels (but all carbs do not, especially under heavy training.) In one study of 74 men, a 75g dose of sugar – about the equivalent of a bottle of soda – decreased serum testosterone by 25% in under an hour, and levels stayed low for at least 2 hours [7]. On top of that, 15% of the men who started with normal testosterone dipped into the hypogonadal range after they ate sugar – that’s the range in which doctors diagnose men’s testes and women’s ovaries as failing. When you do eat carbs, stick to Bulletproof ones like sweet potatoes and squash. My recommendations for types of carbs and how often to eat them are here.

Early infancy androgen effects are the least understood. In the first weeks of life for male infants, testosterone levels rise. The levels remain in a pubertal range for a few months, but usually reach the barely detectable levels of childhood by 4–7 months of age.[15][16] The function of this rise in humans is unknown. It has been theorized that brain masculinization is occurring since no significant changes have been identified in other parts of the body.[17] The male brain is masculinized by the aromatization of testosterone into estrogen, which crosses the blood–brain barrier and enters the male brain, whereas female fetuses have α-fetoprotein, which binds the estrogen so that female brains are not affected.[18]
At the present time, it is suggested that androgen replacement should take the form of natural testosterone. Some of the effects of testosterone are mediated after conversion to estrogen or dihydrotestosterone by the enzymes aromatase and 5a-reductase enzymes respectively. Other effects occur independently of the traditional action of testosterone via the classical androgen receptor- for example, its action as a vasodilator via a cell membrane action as described previously. It is therefore important that the androgen used to treat hypogonadism is amenable to the action of these metabolizing enzymes and can also mediate the non-androgen receptor actions of testosterone. Use of natural testosterone ensures this and reduces the chance of non-testosterone mediated adverse effects. There are now a number of testosterone preparations which can meet these recommendations and the main factor in deciding between them is patient choice. 

Chronic stress dumps adrenaline in your system multiple times a day. And that can lead to high blood pressure, heart disease, obesity, and diabetes. Chronic stress is like red-lining your car all day long. When you drive 100 mph all the time, something is going to break down. A high-stress environment can actually change the way your brain sends messages to your body. Dumping too much adrenaline into your bloodstream can affect blood flow and severely limit your ability to achieve and maintain an erection.

Diabetes is an example of an endocrine disease that can cause a person to experience impotence. Diabetes affects the body’s ability to utilize the hormone insulin. One of the side effects associated with chronic diabetes is nerve damage. This affects penis sensations. Other complications associated with diabetes are impaired blood flow and hormone levels. Both of these factors can contribute to impotence.