Testosterone is included in the World Health Organization's list of essential medicines, which are the most important medications needed in a basic health system.[172] It is available as a generic medication.[10] The price depends on the form of testosterone used.[173] It can be administered as a cream or transdermal patch that is applied to the skin, by injection into a muscle, as a tablet that is placed in the cheek, or by ingestion.[10]


Erectile dysfunction or disorder (ED) is the inability to develop and maintain an erection for satisfactory sexual intercourse or activity. Erectile dysfunction or erectile disorder are the preferred terms as opposed to impotence. There are no uniform criteria defining how consistent the problem has to be and for what duration it must be present to considered ED. The Diagnostic and Statistical Manual of Mental Disorder-5 specifies a duration of at least 6 months in its definition of ED.1

An occasional problem achieving an erection is nothing to worry about. But failure to do so more than 50% of the time at any age may indicate a condition that needs treatment. About 40% of men in their 40s report at least occasional problems getting and maintaining erections. So do more than half (52%) of men aged 40 to 70, and about 70% of men in their 70s.
Sleep apnea is another frequently listed contraindication to testosterone treatment. There have been a few reports of the development, or worsening, of sleep apnea during testosterone therapy (Matsumoto et al 1985) but sleep apnea is actually associated with lower serum testosterone levels (Luboshitzky et al 2002). The reduction in fat mass during treatment with testosterone could potentially be beneficial for sleep apnea, so many specialists will still consider patients for treatment with appropriate monitoring. It is wise to take a clinical history for sleep apnea during testosterone treatment in all men and perform sleep studies in those who develop symptoms.
This evidence, together with the beneficial effects of testosterone replacement on central obesity and diabetes, raises the question whether testosterone treatment could be beneficial in preventing or treating atherosclerosis. No trial of sufficient size or duration has investigated the effect of testosterone replacement in primary or secondary prevention cardiovascular disease. The absence of such data leads us to examine the relationship of testosterone to other cardiovascular risk factors, such as adverse lipid parameters, blood pressure, endothelial dysfunction, coagulation factors, inflammatory markers and cytokines. This analysis can supply evidence of the likely effects of testosterone on overall cardiovascular risk. This has limitations, however, including the potential for diverging effects of testosterone on the various factors involved and the resultant impossibility of accurately predicting the relative impact of such changes.

A simple blood test can determine testosterone levels. There is a wide range of “normal” or healthy level of testosterone circulating in the bloodstream. The normal range of testosterone for men is between 250 and 1100 ng/dL for adult males, and between 8 and 60 ng/dL for adult females, according to the Mayo Clinic. Ask your doctor to test your testosterone levels if you have concerns about low testosterone (low T).
The development of an erection is a complex event involving integration of psychologic, neurologic, endocrine, vascular, and local anatomic systems. Positron emission tomography scanning studies have suggested that sexual arousal is activated in higher cortical centers that then stimulate the medial preoptic and paraventricular nuclei of the hypothalamus.5 These signals ultimately descend through a complex neural network involving the parasympathetic nervous system and eventually activate parasympathetic nerves in the sacral area (S2 to S4).
Hormone deficiency or hypogonadism, whether primary or secondary, has been thought to impact erectile function. Approximately a third of men in the European Male Aging Study demonstrated low testosterone, suggesting that hypogonadism is overrepresented among men with ED.11 Hormone deficiency, however, is less frequently the cause of ED than diabetes or vascular disease. Many entities with a strong relationship to ED also diminish bioavailable testosterone, including obesity, diabetes, and opioid use. Other hormones involved in testosterone metabolism or availability, like thyroid stimulating hormone and gonadotropins, also may impact erectile quality, presumably through regulating bioavailable testosterone. Understanding the relationship between testosterone and ED has been impaired by a lack of standardized measurement of this hormone and the cyclic nature of its release and consumption.
Alprostadil (also known as prostaglandin E1 [PGE1]) is the prominent known smooth-muscle dilator of the corpus cavernosum. Its mechanism of action is believed to be the promotion of intracellular accumulation of cyclic adenosine monophosphate, thereby causing decreased intracellular accumulation of calcium and resulting smooth muscle relaxation. Alprostadil can be delivered to the erectile tissue either via an intraurethral suppository that is massaged and then absorbed across the corpus spongiosum of the urethra to the corpora cavernosa, or directly injected into the corpora cavernosa. When administered urethrally, doses are substantially higher than when directly injected (typical dosing is 500 mcg to 1 mg intraurethral compared with 2.5 mcg to 20 mcg intracavernosal).
In one study, 9.6% reported ‘occasional’ erectile dysfunction, 8.9% reported erectile dysfunction occurring ‘often’, and 18.6% reported erectile dysfunction occurring ‘all the time’. Of these, only 11.6% had received treatment.In another study, only 14.1% of men reported that they had received treatment, despite experiencing erectile dysfunction for longer than 12 months.
The hypogonadal-obesity-adipocytokine cycle hypothesis. Adipose tissue contains the enzyme aromatase which metabolises testosterone to oestrogen. This results in reduced testosterone levels, which increase the action of lipoprotein lipase and increase fat mass, thus increasing aromatisation of testosterone and completing the cycle. Visceral fat also promotes lower testosterone levels by reducing pituitary LH pulse amplitude via leptin and/or other factors. In vitro studies have shown that leptin also inhibits testosterone production directly at the testes. Visceral adiposity could also provide the link between testosterone and insulin resistance (Jones 2007).
But if a man with sleep apnea is diagnosed with low testosterone alone, taking the supplemental hormone can worsen sleep apnea. That's why it's crucial for men with low testosterone to get a thorough workup by an endocrinologist so underlying conditions that can cause low testosterone, such as sleep apnea or pituitary-gland tumors, don't go undiagnosed, Dr. Goodman says.

Dr. Ronald Swerdloff, chief of the endocrinology division at the Harbor-UCLA Medical Center and a professor of medicine at UCLA's David Geffen School of Medicine, served on the panel of experts who developed the Endocrine Society's guidelines. He is also the principal investigator for one of the 12 sites of The Testosterone Trial in Older Men, a nationwide study funded mainly by the National Institute on Aging. The study of 800 men over age 65 with low testosterone is looking at whether men using AndroGel for one year, compared to placebo, will show improvements in walking speed, sexual activity, vitality, memory, and anemia. The study will be completed in June 2015.


The effects of testosterone in humans and other vertebrates occur by way of multiple mechanisms: by activation of the androgen receptor (directly or as DHT), and by conversion to estradiol and activation of certain estrogen receptors.[105][106] Androgens such as testosterone have also been found to bind to and activate membrane androgen receptors.[107][108][109]
A previous meta-analysis has confirmed that treatment of hypogonadal patients with testosterone improves erections compared to placebo (Jain et al 2000). A number of studies have investigated the effect of testosterone levels on erectile dysfunction in normal young men by inducing a hypogonadal state, for example by using a GnRH analogue, and then replacing testosterone at varying doses to produce levels ranging from low-normal to high (Buena et al 1993; Hirshkowitz et al 1997). These studies have shown no significant effects of testosterone on erectile function. These findings contrast with a similar study conducted in healthy men aged 60–75, showing that free testosterone levels achieved with treatment during the study correlate with overall sexual function, including morning erections, spontaneous erections and libido (Gray et al 2005). This suggests that the men in this older age group are particularly likely to suffer sexual symptoms if their testosterone is low. Furthermore, the severity of erectile dysfunction positively correlates with lower testosterone levels in men with type 2 diabetes (Kapoor, Clarke et al 2007).
Type 2 diabetes is an important condition in terms of morbidity and mortality, and the prevalence is increasing in the developed and developing world. The prevalence also increases with age. Insulin resistance is a primary pathological feature of type 2 diabetes and predates the onset of diabetes by many years, during which time raised serum insulin levels compensate and maintain normoglycemia. Insulin resistance and/or impaired glucose tolerance are also part of the metabolic syndrome which also comprises an abnormal serum lipid profile, central obesity and hypertension. The metabolic syndrome can be considered to be a pre-diabetic condition and is itself linked to cardiovascular mortality. Table 1 shows the three commonly used definitions of the metabolic syndrome as per WHO, NCEPIII and IDF respectively (WHO 1999; NCEPIII 2001; Zimmet et al 2005). 
×