The participants were seen every 4 weeks. Blood was taken to measure hormone levels, and questionnaires were given to assess physical function, health status, vitality, and sexual function. Body fat and muscle measurements were also taken at the beginning and end of the 16 weeks. The study was funded in part by NIH’s National Institute on Aging (NIA) and National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK). Results appeared in the September 12, 2013, issue of the New England Journal of Medicine.
More can be learned from a large, randomized, placebo-controlled trial of finasteride treatment in 18,800 men aged 55 or more. Finasteride is a 5α-reductase inhibitor which acts to prevent the metabolism of testosterone to dihydrotestosterone (DHT) – the most active androgen in the prostate. The trial showed a greater overall incidence of prostate cancer in the control group, but men treated with finasteride were more likely to have high grade tumors (Thompson et al 2003), suggesting that reduced androgen exposure of the prostate may delay the presentation of prostate cancer and/or promote advanced disease in some other way.
Organic ED involves abnormalities the penile arteries, veins, or both and is the most common cause of ED, especially in older men. When the problem is arterial, it is usually caused by arteriosclerosis, or hardening of the arteries, although trauma to the arteries may be the cause. The controllable risk factors for arteriosclerosis--being overweight, lack of exercise, high cholesterol, high blood pressure, and cigarette smoking--can cause erectile failure often before progressing to affect the heart. 
A common and important cause of ED is vasculogenic. Many men with ED have comorbid conditions such as hyperlipidemia, hypercholesterolemia, tobacco abuse, diabetes mellitus, or coronary artery disease (CAD). [6] The Princeton III Consensus recommends screening men who present with ED for cardiovascular risk factors; ED may be the earliest presentation of atherosclerosis and vascular disease. [7]

A large number of trials have demonstrated a positive effect of testosterone treatment on bone mineral density (Katznelson et al 1996; Behre et al 1997; Leifke et al 1998; Snyder et al 2000; Zacharin et al 2003; Wang, Cunningham et al 2004; Aminorroaya et al 2005; Benito et al 2005) and bone architecture (Benito et al 2005). These effects are often more impressive in longer trials, which have shown that adequate replacement will lead to near normal bone density but that the full effects may take two years or more (Snyder et al 2000; Wang, Cunningham et al 2004; Aminorroaya et al 2005). Three randomized placebo-controlled trials of testosterone treatment in aging males have been conducted (Snyder et al 1999; Kenny et al 2001; Amory et al 2004). One of these studies concerned men with a mean age of 71 years with two serum testosterone levels less than 12.1nmol/l. After 36 months of intramuscular testosterone treatment or placebo, there were significant increases in vertebral and hip bone mineral density. In this study, there was also a significant decrease in the bone resorption marker urinary deoxypyridinoline with testosterone treatment (Amory et al 2004). The second study contained men with low bioavailable testosterone levels and an average age of 76 years. Testosterone treatment in the form of transdermal patches was given for 1 year. During this trial there was a significant preservation of hip bone mineral density with testosterone treatment but testosterone had no effect on bone mineral density at other sites including the vertebrae. There were no significant alterations in bone turnover markers during testosterone treatment (Kenny et al 2001). The remaining study contained men of average age 73 years. Men were eligible for the study if their serum total testosterone levels were less than 16.5 nmol/L, meaning that the study contained men who would usually be considered eugonadal. The beneficial effects of testosterone on bone density were confined to the men who had lower serum testosterone levels at baseline and were seen only in the vertebrae. There were no significant changes in bone turnover markers. Testosterone in the trial was given via scrotal patches for a 36 month duration (Snyder et al 1999). A recent meta-analysis of the effects on bone density of testosterone treatment in men included data from these studies and two other randomized controlled trials. The findings were that testosterone produces a significant increase of 2.7% in the bone mineral density at the lumber spine but no overall change at the hip (Isidori et al 2005). These results from randomized controlled trials in aging men show much smaller benefits of testosterone treatment on bone density than have been seen in other trials. This could be due to the trials including patients who are not hypogonadal and being too short to allow for the maximal effects of testosterone. The meta-analysis also assessed the data concerning changes of bone formation and resorption markers during testosterone treatment. There was a significant decrease in bone resorption markers but no change in markers of bone formation suggesting that reduction of bone resorption may be the primary mode of action of testosterone in improving bone density (Isidori et al 2005).
In a randomized double-blind, parallel, placebo-controlled trial, sildenafil plus testosterone was not superior to sildenafil plus placebo in improving erectile function in men with ED and low testosterone levels. [19] The objective of the study was to determine whether the addition of testosterone to sildenafil therapy improves erectile response in men with ED and low testosterone levels.
The largest amounts of testosterone (>95%) are produced by the testes in men,[2] while the adrenal glands account for most of the remainder. Testosterone is also synthesized in far smaller total quantities in women by the adrenal glands, thecal cells of the ovaries, and, during pregnancy, by the placenta.[122] In the testes, testosterone is produced by the Leydig cells.[123] The male generative glands also contain Sertoli cells, which require testosterone for spermatogenesis. Like most hormones, testosterone is supplied to target tissues in the blood where much of it is transported bound to a specific plasma protein, sex hormone-binding globulin (SHBG).
Men with medical conditions that may cause a sustained erection, such as sickle cell anemia, leukemia, or multiple myeloma, or a man who has an abnormally-shaped penis, may not benefit from these medications. Also, men with liver diseases or a disease of the retina, such as macular degeneration or retinitis pigmentosa, may not be able to take these medications, or may need to take the lowest dosage.

Several pathways have been described to explain how information travels from the hypothalamus to the sacral autonomic centers. One pathway travels from the dorsomedial hypothalamus through the dorsal and central gray matter, descends to the locus ceruleus, and projects ventrally in the mesencephalic reticular formation. Input from the brain is conveyed through the dorsal spinal columns to the thoracolumbar and sacral autonomic nuclei.
^ Southren AL, Gordon GG, Tochimoto S, Pinzon G, Lane DR, Stypulkowski W (May 1967). "Mean plasma concentration, metabolic clearance and basal plasma production rates of testosterone in normal young men and women using a constant infusion procedure: effect of time of day and plasma concentration on the metabolic clearance rate of testosterone". The Journal of Clinical Endocrinology and Metabolism. 27 (5): 686–94. doi:10.1210/jcem-27-5-686. PMID 6025472.
In addition to its role as a natural hormone, testosterone is used as a medication, for instance in the treatment of low testosterone levels in men and breast cancer in women.[10] Since testosterone levels decrease as men age, testosterone is sometimes used in older men to counteract this deficiency. It is also used illicitly to enhance physique and performance, for instance in athletes.
Important future developments will include selective androgen receptor modulators (SARMs). These drugs will be able to produce isolated effects of testosterone at androgen receptors. They are likely to become useful clinical drugs, but their initial worth may lie in facilitating research into the relative importance of testosterone’s action at the androgen receptor compared to at other sites or after conversion to other hormones. Testosterone will remain the treatment of choice for late onset hypogonadism for some time to come.
Several studies accessed the prevalence of ED. The Massachusetts Male Aging Study reported a prevalence of 52%.2 The study demonstrated that ED is increasingly prevalent with age: approximately 40% of men are affected at age 40 and nearly 70% of men are affected at age 70. The prevalence of complete ED increased from 5% at age 40 to 15% at age 70.2 Age was the variable most strongly associated with ED.
Testosterone belongs to a class of male hormones called androgens, which are sometimes called steroids or anabolic steroids. In men, testosterone is produced mainly in the testes, with a small amount made in the adrenal glands. The brain's hypothalamus and pituitary gland control testosterone production. The hypothalamus instructs the pituitary gland on how much testosterone to produce, and the pituitary gland passes the message on to the testes. These communications happen through chemicals and hormones in the bloodstream.
"By expanding the boundaries of this disease to common symptoms in aging males, such as fatigue and reduced libido, drug companies seek to increase their markets and boost their sales," wrote Barbara Mintzes, an assistant professor at the University of British Columbia School of Public Health, and Agnes Vitry, a senior research fellow at the University of South Australia, in a 2012 article in the Medical Journal of Australia .
Mood disturbance and dysthymia are part of the clinical syndrome of hypogonadism. Epidemiological studies have found a positive association between testosterone levels and mood, and depressed aging males have lower testosterone levels than controls (Barrett-Connor, Von Muhlen et al 1999). Furthermore, induction of a hypogonadal state during treatment of men for prostate cancer leads to an increase in depression scores (Almeida et al 2004). Trials of testosterone treatment effects on mood have varied in outcome. Data on the effects on men with depression are conflicting (Seidman et al 2001; Pope et al 2003) but there is evidence that testosterone treatment of older hypogonadal men does result in improvements in mood (Wang et al 1996) and that this may occur through changes in regional brain perfusion (Azad et al 2003).
Present in much greater levels in men than women, testosterone initiates the development of the male internal and external reproductive organs during foetal development and is essential for the production of sperm in adult life. This hormone also signals the body to make new blood cells, ensures that muscles and bones stay strong during and after puberty and enhances libido both in men and women. Testosterone is linked to many of the changes seen in boys during puberty (including an increase in height, body and pubic hair growth, enlargement of the penis, testes and prostate gland, and changes in sexual and aggressive behaviour). It also regulates the secretion of luteinising hormone and follicle stimulating hormone. To effect these changes, testosterone is often converted into another androgen called dihydrotestosterone. 
show that total testosterone levels increase after exercising, especially after resistance training. Low testosterone levels can affect your sex drive and your mood. The good news is that exercise improves mood and stimulates brain chemicals to help you feel happier and more confident. Exercise also boosts energy and endurance, and helps you to sleep better. Fitness experts recommend 30 minutes of exercise every day.
Sexual dysfunction and ED become more common as men age. The percentage of complete ED increases from 5% to 15% as age increases from 40 to 70 years. But this does not mean growing older is the end of your sex life. ED can be treated at any age. Also, ED may be more common in Hispanic men and in those with a history of diabetes, obesity, smoking, and hypertension. Research shows that African-American men sought medical care for ED twice the rate of other racial groups.
Testosterone is also important for maintaining bone strength and lean muscle mass in women, as well as contributing to overall well-being and energy levels. This hormone plays a key role in a woman’s sex drive and is responsible for enhancing sexual pleasure during intercourse. However, the levels of testosterone produced by females is still between ten and times less than the amount produced by men.

The aim of treatment for hypogonadism is to normalize serum testosterone levels and abolish symptoms or pathological states that are due to low testosterone levels. The exact target testosterone level is a matter of debate, but current recommendations advocate levels in the mid-lower normal adult range (Nieschlag et al 2005). Truly physiological testosterone replacement would require replication of the diurnal rhythm of serum testosterone levels, but there is no current evidence that this is beneficial (Nieschlag et al 2005).
ED usually has a multifactorial etiology. Organic, physiologic, endocrine, and psychogenic factors are involved in the ability to obtain and maintain erections. In general, ED is divided into 2 broad categories, organic and psychogenic. Although most ED was once attributed to psychological factors, pure psychogenic ED is in fact uncommon; however, many men with organic etiologies may also have an associated psychogenic component.
Clinical trials of the effect of testosterone on glucose metabolism in men have occurred in diabetic and non-diabetic populations. Data specific to aging males is not available. A series of studies investigated the effects of testosterone or dihydrotestosterone given for 6 weeks or 3 months to middle aged, non-diabetic obese men (Marin, Holmang et al 1992; Marin, Krotkiewski et al 1992; Marin et al 1993). It was found that physiological treatment doses led to improved insulin resistance, as measured by the gold standard technique using a euglycemic clamp and/or serum glucose and insulin responses during glucose tolerance test. These improvements were associated with decreased central obesity, measured by computered tomography (CT) or waist-hip ratio, without reduced total fat mass. Insulin resistance improved more with testosterone than dihydrotestosterone treatment and beneficial effects were greater in men with lower baseline testosterone levels. Increasing testosterone levels into the supraphysiological range lead to decreased glucose tolerance.
Factors that mediate contraction in the penis include noradrenaline, endothelin-1, neuropeptide Y, prostanoids, angiotensin II, and others not yet identified. Factors that mediate relaxation include acetylcholine, nitric oxide (NO), vasoactive intestinal polypeptide, pituitary adenylyl cyclase–activating peptide, calcitonin gene–related peptide, adrenomedullin, adenosine triphosphate, and adenosine prostanoids.
Both ED and low testosterone (hypogonadism) increase with age. The incidence of the latter is 40% in men aged 45 years and older. [15] Testosterone is known to be important in mood, cognition, vitality, bone health, and muscle and fat composition. It also plays a key role in sexual dysfunction (eg, low libido, poor erection quality, ejaculatory or orgasmic dysfunction, reduced spontaneous erections, or reduced sexual activity). [16]
Epidemiological studies suggest that many significant clinical findings and important disease states are linked to low testosterone levels. These include osteoporosis (Campion and Maricic 2003), Alzheimer’s disease (Moffat et al 2004), frailty, obesity (Svartberg, von Muhlen, Sundsfjord et al 2004), diabetes (Barrett-Connor 1992), hypercholesterolemia (Haffner et al 1993; Van Pottelbergh et al 2003), hypertension (Phillips et al 1993), cardiac failure (Tappler and Katz 1979; Kontoleon et al 2003) and ischemic heart disease (Barrett-Connor and Khaw 1988). The extent to which testosterone deficiency is involved in the pathogenesis of these conditions, or to which testosterone supplementation could be useful in their treatment is an area of great interest with many unanswered questions.

The first step in treating the patient with ED is to take a thorough sexual, medical, and psychosocial history. Questionnaires are available to assist clinicians in obtaining important patient data. (See Presentation.) Successful treatment of sexual dysfunction has been demonstrated to improve sexual intimacy and satisfaction, improve sexual aspects of quality of life, improve overall quality of life, and relieve symptoms of depression. (See Treatment.)

So here’s something that’s really fascinating. Healthy eating is a way to reduce anxiety and stress. Now how, you may be asking, right? Well, think about it. We live in a world where there are so many variables and where we don’t have control over our lives. But now, with healthy eating, we have control over what goes into our body. And now having that control empowers us to be even healthier, to be more directive in what we do. And certainly, that begins then to reduce the anxiety and the stress. So all in one, you have a healthier body, but certainly a healthier mind.
The association between low testosterone and ED is not entirely clear. Although these 2 processes certainly overlap in some instances, they are distinct entities. Some 2-21% of men have both hypogonadism and ED; however, it is unclear to what degree treating the former will improve erectile function. [17] About 35-40% of men with low testosterone see an improvement in their erections with testosterone replacement; however, almost 65% of these men see no improvement. [15]

Testosterone is only one of many factors that influence aggression and the effects of previous experience and environmental stimuli have been found to correlate more strongly. A few studies indicate that the testosterone derivative estradiol (one form of estrogen) might play an important role in male aggression.[66][67][68][69] Studies have also found that testosterone facilitates aggression by modulating vasopressin receptors in the hypothalamus.[70]

ED usually has a multifactorial etiology. Organic, physiologic, endocrine, and psychogenic factors are involved in the ability to obtain and maintain erections. In general, ED is divided into 2 broad categories, organic and psychogenic. Although most ED was once attributed to psychological factors, pure psychogenic ED is in fact uncommon; however, many men with organic etiologies may also have an associated psychogenic component.

Hypogonadism is a disease in which the body is unable to produce normal amounts of testosterone due to a problem with the testicles or with the pituitary gland that controls the testicles. Testosterone replacement therapy can improve the signs and symptoms of low testosterone in these men. Doctors may prescribe testosterone as injections, pellets, patches or gels.
×