Several pathways have been described to explain how information travels from the hypothalamus to the sacral autonomic centers. One pathway travels from the dorsomedial hypothalamus through the dorsal and central gray matter, descends to the locus ceruleus, and projects ventrally in the mesencephalic reticular formation. Input from the brain is conveyed through the dorsal spinal columns to the thoracolumbar and sacral autonomic nuclei.
Unfortunately, some patients may have an overly simplified understanding of the role of PDE5 inhibitors in ED management. Such patients may not expect or be willing to undergo a long evaluation and testing process to obtain a better understanding of their sexual problem, and they may be less likely to involve their partner in discussing their sexual relationship with the physician. They may expect to obtain medications through a phone call to their doctor or even over the Internet, with minimal or no physician contact at all.
In Australia, where it is illegal for drug makers to advertise directly to consumers—as it is everywhere except the United States and New Zealand— Dr. Vitry told me via e-mail that the country's FDA-like regulatory body, Medicines Australia, fined Bayer a minuscule, but symbolic, 10,000 Australian dollars for breaching MA's code of conduct in its TRT disease-awareness campaign. Although Bayer implied that low testosterone was the most prevalent cause of the symptoms described, and that there was a high incidence of low T, Vitry said Medicines Australia didn't nail Bayer for illegal direct-to-consumer advertising because its campaign "did not encourage patients to seek a prescription for a specific testosterone product."
The reliable measurement of serum free testosterone requires equilibrium dialysis. This is not appropriate for clinical use as it is very time consuming and therefore expensive. The amount of bioavailable testosterone can be measured as a percentage of the total testosterone after precipitation of the SHBG bound fraction using ammonium sulphate. The bioavailable testosterone is then calculated from the total testosterone level. This method has an excellent correlation with free testosterone (Tremblay and Dube 1974) but is not widely available for clinical use. In most clinical situations the available tests are total testosterone and SHBG which are both easily and reliably measured. Total testosterone is appropriate for the diagnosis of overt male hypogonadism where testosterone levels are very low and also in excluding hypogonadism in patients with normal/high-normal testosterone levels. With increasing age, a greater number of men have total testosterone levels just below the normal range or in the low-normal range. In these patients total testosterone can be an unreliable indicator of hypogonadal status. There are a number of formulae that calculate an estimated bioavailable or free testosterone level using the SHBG and total testosterone levels. Some of these have been shown to correlate well with laboratory measures and there is evidence that they more reliably indicate hypogonadism than total testosterone in cases of borderline biochemical hypogonadism (Vermeulen et al 1971; Morris et al 2004). It is important that such tests are validated for use in patient populations relevant to the patient under consideration.
In a randomized double-blind, parallel, placebo-controlled trial, sildenafil plus testosterone was not superior to sildenafil plus placebo in improving erectile function in men with ED and low testosterone levels. [19] The objective of the study was to determine whether the addition of testosterone to sildenafil therapy improves erectile response in men with ED and low testosterone levels.
Erectile dysfunction is known to be associated with general health status, thus, lifestyle modification improves erectile function and decreases the rate of decline of function with aging. One year after discontinuation of smoking, patients were found to have a 25% improvement in erectile quality.16 In addition, multivariate analysis found obesity is associated with erectile dysfunction with an approximately 50% increase in ED in obese men as compared with normal weight men.17
Think of erectile dysfunction as your body’s “check engine light.” The blood vessels in the penis are smaller than other parts of the body, so underlying conditions like blocked arteries, heart disease, or high blood pressure usually show up as ED before something more serious like a heart attack or stroke. ED is your body’s way of saying, “Something is wrong.” And the list of things that cause erectile dysfunction can include:

A simple blood test can determine testosterone levels. There is a wide range of “normal” or healthy level of testosterone circulating in the bloodstream. The normal range of testosterone for men is between 250 and 1100 ng/dL for adult males, and between 8 and 60 ng/dL for adult females, according to the Mayo Clinic. Ask your doctor to test your testosterone levels if you have concerns about low testosterone (low T).
Side effects include lightheadedness, fainting, priapism, urethral bleeding (intraurethral), dyspareunia in the partner (intraurethral), hematoma (intracavernosal) or penile curvature secondary to scar (intracavernosal). Efficacy of intraurethral alprostadil has been demonstrated to be around 50% ("able to have intercourse") in randomized controlled trials.31,32 For intracorporeal injection, typically alprostadil is tried alone, or compounded with papaverine (nonspecific phosphodiesterase inhibitor that increases intracellular cyclic adenosine monophosphate and cGMP) and/or phentolamine (competitive, non-selective alpha1- and alpha2-adrenoreceptor blocker). Pinsky et al33 reported an extensive review of the benefits and drawbacks of the combinations of these drugs.
Additionally, the physiologic processes involving erections begin at the genetic level. Certain genes become activated at critical times to produce proteins vital to sustaining this pathway. Some researchers have focused on identifying particular genes that place men at risk for ED. At present, these studies are limited to animal models, and little success has been reported to date. [4] Nevertheless, this research has given rise to many new treatment targets and a better understanding of the entire process.
^ Jump up to: a b Lazaridis I, Charalampopoulos I, Alexaki VI, Avlonitis N, Pediaditakis I, Efstathopoulos P, Calogeropoulou T, Castanas E, Gravanis A (2011). "Neurosteroid dehydroepiandrosterone interacts with nerve growth factor (NGF) receptors, preventing neuronal apoptosis". PLoS Biol. 9 (4): e1001051. doi:10.1371/journal.pbio.1001051. PMC 3082517. PMID 21541365.
Think of erectile dysfunction as your body’s “check engine light.” The blood vessels in the penis are smaller than other parts of the body, so underlying conditions like blocked arteries, heart disease, or high blood pressure usually show up as ED before something more serious like a heart attack or stroke. ED is your body’s way of saying, “Something is wrong.” And the list of things that cause erectile dysfunction can include:
The association between low testosterone and ED is not entirely clear. Although these 2 processes certainly overlap in some instances, they are distinct entities. Some 2-21% of men have both hypogonadism and ED; however, it is unclear to what degree treating the former will improve erectile function. [17] About 35-40% of men with low testosterone see an improvement in their erections with testosterone replacement; however, almost 65% of these men see no improvement. [15] 

Vascular damage may result from radiation therapy to the pelvis and prostate in the treatment of prostate cancer. [36] Both the blood vessels and the nerves to the penis may be affected. Radiation damage to the crura of the penis, which are highly susceptible to radiation damage, can induce ED. Data indicate that 50% of men undergoing radiation therapy lose erectile function within 5 years after completing therapy; fortunately, some respond to one of the PDE5 inhibitors.
Stress is your body responding to your environment. And it’s a good thing—in limited doses. When you get stressed out your body makes chemicals like adrenaline that make you stronger, faster, fitter, and even able to think more clearly. Most people call this reaction the “fight-or-flight” response, and it’s a life-saver in dangerous situations. In a very real sense, adrenaline makes you a part-time superhero. The problems happen when your body deals with constant stress.

In males, the majority of testosterone is secreted from the testes, hence the term “testosterone”. The hormone is also produced in small amounts by the adrenal gland. The production of this hormone is controlled by the hypothalamus and pituitary gland in the brain. The pituitary gland receives instructions from the hypothalamus on how much testosterone needs producing and passes this information onto the testicles via chemicals and hormones circulating in the bloodstream.


Several pathways have been described to explain how information travels from the hypothalamus to the sacral autonomic centers. One pathway travels from the dorsomedial hypothalamus through the dorsal and central gray matter, descends to the locus ceruleus, and projects ventrally in the mesencephalic reticular formation. Input from the brain is conveyed through the dorsal spinal columns to the thoracolumbar and sacral autonomic nuclei.
Findings that improvements in serum glucose, serum insulin, insulin resistance or glycemic control, in men treated with testosterone are accompanied by reduced measures of central obesity, are in line with other studies showing a specific effect of testosterone in reducing central or visceral obesity (Rebuffe-Scrive et al 1991; Marin, Holmang et al 1992). Furthermore, studies that have shown neutral effects of testosterone on glucose metabolism have not measured (Corrales et al 2004), or shown neutral effects (Lee et al 2005) (Tripathy et al 1998; Bhasin et al 2005) on central obesity. Given the known association of visceral obesity with insulin resistance, it is possible that testosterone treatment of hypogonadal men acts to improve insulin resistance and diabetes through an effect in reducing central obesity. This effect can be explained by the action of testosterone in inhibiting lipoprotein lipase and thereby reducing triglyceride uptake into adipocytes (Sorva et al 1988), an action which seems to occur preferentially in visceral fat (Marin et al 1995; Marin et al 1996). Visceral fat is thought to be more responsive to hormonal changes due to a greater concentration of androgen receptors and increased vascularity compared with subcutaneous fat (Bjorntorp 1996). Further explanation of the links between hypogonadism and obesity is offered by the hypogonadal-obesity-adipocytokine cycle hypothesis (see Figure 1). In this model, increases in body fat lead to increases in aromatase levels, in addition to insulin resistance, adverse lipid profiles and increased leptin levels. Increased action of aromatase in metabolizing testosterone to estrogen, reduces testosterone levels which induces further accumulation of visceral fat. Higher leptin levels and possibly other factors, act at the pituitary to suppress gonadotrophin release and exacerbate hypogonadism (Cohen 1999; Kapoor et al 2005). Leptin has also been shown to reduce testosterone secretion from rodent testes in vitro (Tena-Sempere et al 1999). A full review of the relationship between testosterone, insulin resistance and diabetes can be found elsewhere (Kapoor et al 2005; Jones 2007).
Abnormally high levels of testosterone could be the result of an adrenal gland disorder, or even cancer of the testes. High levels may also occur in less serious conditions. Congenital adrenal hyperplasia, which can affect males and females, is a rare but natural cause for elevated testosterone production. Your doctor may order other tests if your levels are exceedingly high.
Associated morbidity may include various other male sexual dysfunctions, such as premature (early) ejaculation and male hypoactive sexual desire disorder. The NHSLS found that 28.5% of men aged 18-59 years reported premature ejaculation, and 15.8% lacked sexual interest during the past year. An additional 17% reported anxiety about sexual performance, and 8.1% had a lack of pleasure in sex. [51]

“This study establishes testosterone levels at which various physiological functions start to become impaired, which may help provide a rationale for determining which men should be treated with testosterone supplements,” Finkelstein says. “But the biggest surprise was that some of the symptoms routinely attributed to testosterone deficiency are actually partially or almost exclusively caused by the decline in estrogens that is an inseparable result of lower testosterone levels.”
^ Butenandt A, Hanisch G (1935). "Uber die Umwandlung des Dehydroandrosterons in Androstenol-(17)-one-(3) (Testosterone); um Weg zur Darstellung des Testosterons auf Cholesterin (Vorlauf Mitteilung). [The conversion of dehydroandrosterone into androstenol-(17)-one-3 (testosterone); a method for the production of testosterone from cholesterol (preliminary communication)]". Chemische Berichte (in German). 68 (9): 1859–62. doi:10.1002/cber.19350680937.
Erectile dysfunction or ED (It used to be called impotence) is the inability to achieve or sustain an erection suitable for sexual intercourse. Problems with erections may stem from medications, chronic illnesses, poor blood flow to the penis, drinking too much alcohol, or being too tired. Erectile dysfunction can occur at any age, but it is more common in men older than 75.

Having learned a great deal more about erectile dysfunction including its risk factors and causes, you should be equipped to assess your own erectile function. If you have experienced erectile issues or you have some of the risk factors mentioned above, it may be worth making a trip to your doctor’s office. If you choose to seek help, give your doctor as much information as you can about your symptoms including their frequency and severity as well as the onset. With your doctor’s help, you can determine the best course of treatment to restore sexual function.

Cosgrove et al reported a higher rate of sexual dysfunction in veterans with posttraumatic stress disorder (PTSD) than in veterans who did not develop this problem. [42] The domains on the International Index of Erectile Function (IIEF) questionnaire that demonstrated the most change included overall sexual satisfaction and erectile function. [43, 44] Men with PTSD should be evaluated and treated if they have sexual dysfunction.
In the short term, alcohol relaxes muscles in the penis, letting blood to flow in (which is a good thing). However, alcohol also prevents other blood vessels from closing and trapping all the extra blood. Erections depend on trapping increased blood flow in the erectile tissue of the penis. If you don’t trap that extra blood, you don’t get an erection. In the long run, excessive alcohol consumption can cause liver scarring, high blood pressure, and can damage your blood vessels resulting in erectile dysfunction.
The partial synthesis in the 1930s of abundant, potent testosterone esters permitted the characterization of the hormone's effects, so that Kochakian and Murlin (1936) were able to show that testosterone raised nitrogen retention (a mechanism central to anabolism) in the dog, after which Allan Kenyon's group[183] was able to demonstrate both anabolic and androgenic effects of testosterone propionate in eunuchoidal men, boys, and women. The period of the early 1930s to the 1950s has been called "The Golden Age of Steroid Chemistry",[184] and work during this period progressed quickly. Research in this golden age proved that this newly synthesized compound—testosterone—or rather family of compounds (for many derivatives were developed from 1940 to 1960), was a potent multiplier of muscle, strength, and well-being.[185]
Autopsy studies have found histological prostate cancer to be very common, with one series showing a prevalence of greater than fifty percent in men over age sixty (Holund 1980). The majority of histological cancers go undetected so that the clinical incidence of the disease is much lower, but it is still the most prevalent non-skin cancer in men (Jemal et al 2003). Prostate cancer is also unusual in comparison to other adult cancers in that the majority of those with the disease will die of other causes. Treatment of prostate cancer with androgen deprivation is known to be successful and is widely practiced, indicating an important role for testosterone in modifying the behavior of prostate cancer. In view of this, testosterone treatment is absolutely contraindicated in any case of known or suspected prostate cancer. The question of whether testosterone treatment could cause new cases of prostate cancer, or more likely cause progression of undiagnosed histological prostate cancer that would otherwise have remained occult, is an important consideration when treating ageing males with testosterone.
When you become aroused, your brain sends chemical messages to the blood vessels in the penis, causing them to dilate or open, allowing blood to flow into the penis. As the pressure builds, the blood becomes trapped in the corpora cavernosa, keeping the penis erect. If blood flow to the penis is insufficient or if it fails to stay inside the penis, it can lead to erectile dysfunction.
Low-intensity extracorporeal shock wave therapy has been proposed as a new non-invasive treatment for erectile dysfunction caused by problems with blood vessels. Shock wave therapy machines are now available in some medical practices in Australia. Although there is some evidence that it may help a proportion of men with erectile dysfunction, more research is needed before clear recommendations on its use can be made.
Factors that mediate contraction in the penis include noradrenaline, endothelin-1, neuropeptide Y, prostanoids, angiotensin II, and others not yet identified. Factors that mediate relaxation include acetylcholine, nitric oxide (NO), vasoactive intestinal polypeptide, pituitary adenylyl cyclase–activating peptide, calcitonin gene–related peptide, adrenomedullin, adenosine triphosphate, and adenosine prostanoids.
The prevalence of biochemical testosterone deficiency increases with age. This is partly due to decreasing testosterone levels associated with illness or debility but there is also convincing epidemiological data to show that serum free and total testosterone levels also fall with normal aging (Harman et al 2001; Feldman et al 2002). The symptoms of aging include tiredness, lack of energy, reduced strength, frailty, loss of libido, decreased sexual performance depression and mood change. Men with hypogonadism experience similar symptoms. This raises the question of whether some symptoms of aging could be due to relative androgen deficiency. On the other hand, similarities between normal aging and the symptoms of mild androgen deficiency make the clinical diagnosis of hypogonadism in aging men more challenging.
Testosterone is used as a medication for the treatment of males with too little or no natural testosterone production, certain forms of breast cancer,[10] and gender dysphoria in transgender men. This is known as hormone replacement therapy (HRT) or testosterone replacement therapy (TRT), which maintains serum testosterone levels in the normal range. Decline of testosterone production with age has led to interest in androgen replacement therapy.[170] It is unclear if the use of testosterone for low levels due to aging is beneficial or harmful.[171]
×