Interest in testosterone began when farmers of old first noticed that castrated animals were more docile than their intact peers. Ditto for castrated humans. For human males with intact gonads, testosterone increases during puberty. It deepens the voice, increases muscle growth, promotes facial and body hair, and spurs the sex drive. Testosterone also is associated with personality traits related to power and dominance.

It is normal for a man to have five to six erections during sleep, especially during rapid eye movement (REM). Their absence may indicate a problem with nerve function or blood supply in the penis. There are two methods for measuring changes in penile rigidity and circumference during nocturnal erection: snap gauge and strain gauge. A significant proportion of men who have no sexual dysfunction nonetheless do not have regular nocturnal erections.

Testosterone is significantly correlated with aggression and competitive behaviour and is directly facilitated by the latter. There are two theories on the role of testosterone in aggression and competition.[77] The first one is the challenge hypothesis which states that testosterone would increase during puberty thus facilitating reproductive and competitive behaviour which would include aggression.[77] Thus it is the challenge of competition among males of the species that facilitates aggression and violence.[77] Studies conducted have found direct correlation between testosterone and dominance especially among the most violent criminals in prison who had the highest testosterone levels.[77] The same research also found fathers (those outside competitive environments) had the lowest testosterone levels compared to other males.[77]
Testosterone is included in the World Health Organization's list of essential medicines, which are the most important medications needed in a basic health system.[172] It is available as a generic medication.[10] The price depends on the form of testosterone used.[173] It can be administered as a cream or transdermal patch that is applied to the skin, by injection into a muscle, as a tablet that is placed in the cheek, or by ingestion.[10]
Erectile dysfunction (ED) affects 50% of men older than 40 years, [4] exerting substantial effects on quality of life. [5] This common problem is complex and involves multiple pathways. Penile erections are produced by an integration of physiologic processes involving the central nervous, peripheral nervous, hormonal, and vascular systems. Any abnormality in these systems, whether from medication or disease, has a significant impact on the ability to develop and sustain an erection, ejaculate, and experience orgasm.
The brain is also affected by this sexual differentiation;[13] the enzyme aromatase converts testosterone into estradiol that is responsible for masculinization of the brain in male mice. In humans, masculinization of the fetal brain appears, by observation of gender preference in patients with congenital diseases of androgen formation or androgen receptor function, to be associated with functional androgen receptors.[95]
Due to the risk of hypotension, caution should be used in patients using alpha blockers for prostate hyperplasia and patients using other antihypertensive medications and alpha blockers, which should not be co-administered with PDE5 inhibitors. In patients who take 50 mg of sildenafil or more and use alpha blockers, sildenafil dosing should be avoided for at least 4 hours after the dose of the alpha blocker. In patients who take 25 mg of sildenafil, use of any alpha blockers is considered safe.
Penile erection is managed by two mechanisms: the reflex erection, which is achieved by directly touching the penile shaft, and the psychogenic erection, which is achieved by erotic or emotional stimuli. The former uses the peripheral nerves and the lower parts of the spinal cord, whereas the latter uses the limbic system of the brain. In both cases, an intact neural system is required for a successful and complete erection. Stimulation of the penile shaft by the nervous system leads to the secretion of nitric oxide (NO), which causes the relaxation of smooth muscles of corpora cavernosa (the main erectile tissue of penis), and subsequently penile erection. Additionally, adequate levels of testosterone (produced by the testes) and an intact pituitary gland are required for the development of a healthy erectile system. As can be understood from the mechanisms of a normal erection, impotence may develop due to hormonal deficiency, disorders of the neural system, lack of adequate penile blood supply or psychological problems.[18] Spinal cord injury causes sexual dysfunction including ED. Restriction of blood flow can arise from impaired endothelial function due to the usual causes associated with coronary artery disease, but can also be caused by prolonged exposure to bright light.
Two of the immediate metabolites of testosterone, 5α-DHT and estradiol, are biologically important and can be formed both in the liver and in extrahepatic tissues.[147] Approximately 5 to 7% of testosterone is converted by 5α-reductase into 5α-DHT, with circulating levels of 5α-DHT about 10% of those of testosterone, and approximately 0.3% of testosterone is converted into estradiol by aromatase.[2][147][153][154] 5α-Reductase is highly expressed in the male reproductive organs (including the prostate gland, seminal vesicles, and epididymides),[155] skin, hair follicles, and brain[156] and aromatase is highly expressed in adipose tissue, bone, and the brain.[157][158] As much as 90% of testosterone is converted into 5α-DHT in so-called androgenic tissues with high 5α-reductase expression,[148] and due to the several-fold greater potency of 5α-DHT as an AR agonist relative to testosterone,[159] it has been estimated that the effects of testosterone are potentiated 2- to 3-fold in such tissues.[160]

A.D.A.M., Inc. is accredited by URAC, also known as the American Accreditation HealthCare Commission (www.urac.org). URAC's accreditation program is an independent audit to verify that A.D.A.M. follows rigorous standards of quality and accountability. A.D.A.M. is among the first to achieve this important distinction for online health information and services. Learn more about A.D.A.M.'s editorial policy, editorial process and privacy policy. A.D.A.M. is also a founding member of Hi-Ethics and subscribes to the principles of the Health on the Net Foundation (www.hon.ch).
The mechanisms by which testosterone plays a role in erectile function are not completely understood. A study evaluating the effect of testosterone on erections in surgically castrated rabbits and control animals, in which the rabbits’ intracavernosal pressures were compared after cavernosal nerve stimulation, determined that castrated rabbits had much lower pressures after stimulation than control rabbits did. [21] Notably, the pressures increased when castrated rabbits received exogenous testosterone replacement.
Epidemiological studies suggest that many significant clinical findings and important disease states are linked to low testosterone levels. These include osteoporosis (Campion and Maricic 2003), Alzheimer’s disease (Moffat et al 2004), frailty, obesity (Svartberg, von Muhlen, Sundsfjord et al 2004), diabetes (Barrett-Connor 1992), hypercholesterolemia (Haffner et al 1993; Van Pottelbergh et al 2003), hypertension (Phillips et al 1993), cardiac failure (Tappler and Katz 1979; Kontoleon et al 2003) and ischemic heart disease (Barrett-Connor and Khaw 1988). The extent to which testosterone deficiency is involved in the pathogenesis of these conditions, or to which testosterone supplementation could be useful in their treatment is an area of great interest with many unanswered questions.

Testosterone is the primary sex hormone in men, and it is responsible for the development of many of the physical characteristics that are considered typically male. Women also produce the hormone in much smaller amounts. Testosterone, part of a hormone class known as androgens, is produced by the testicles after stimulation by the pituitary gland, which is located near the base of the brain, and it sends signals to a male's testicles (or to a woman's ovaries) that spark feelings of sexual desire. (1)
Findings that improvements in serum glucose, serum insulin, insulin resistance or glycemic control, in men treated with testosterone are accompanied by reduced measures of central obesity, are in line with other studies showing a specific effect of testosterone in reducing central or visceral obesity (Rebuffe-Scrive et al 1991; Marin, Holmang et al 1992). Furthermore, studies that have shown neutral effects of testosterone on glucose metabolism have not measured (Corrales et al 2004), or shown neutral effects (Lee et al 2005) (Tripathy et al 1998; Bhasin et al 2005) on central obesity. Given the known association of visceral obesity with insulin resistance, it is possible that testosterone treatment of hypogonadal men acts to improve insulin resistance and diabetes through an effect in reducing central obesity. This effect can be explained by the action of testosterone in inhibiting lipoprotein lipase and thereby reducing triglyceride uptake into adipocytes (Sorva et al 1988), an action which seems to occur preferentially in visceral fat (Marin et al 1995; Marin et al 1996). Visceral fat is thought to be more responsive to hormonal changes due to a greater concentration of androgen receptors and increased vascularity compared with subcutaneous fat (Bjorntorp 1996). Further explanation of the links between hypogonadism and obesity is offered by the hypogonadal-obesity-adipocytokine cycle hypothesis (see Figure 1). In this model, increases in body fat lead to increases in aromatase levels, in addition to insulin resistance, adverse lipid profiles and increased leptin levels. Increased action of aromatase in metabolizing testosterone to estrogen, reduces testosterone levels which induces further accumulation of visceral fat. Higher leptin levels and possibly other factors, act at the pituitary to suppress gonadotrophin release and exacerbate hypogonadism (Cohen 1999; Kapoor et al 2005). Leptin has also been shown to reduce testosterone secretion from rodent testes in vitro (Tena-Sempere et al 1999). A full review of the relationship between testosterone, insulin resistance and diabetes can be found elsewhere (Kapoor et al 2005; Jones 2007).

When females have a higher baseline level of testosterone, they have higher increases in sexual arousal levels but smaller increases in testosterone, indicating a ceiling effect on testosterone levels in females. Sexual thoughts also change the level of testosterone but not level of cortisol in the female body, and hormonal contraceptives may affect the variation in testosterone response to sexual thoughts.[51]


One of the first steps is to distinguish between physiological and psychological ED. Determining whether involuntary erections are present is important in eliminating the possibility of psychogenic causes for ED.[1] Obtaining full erections occasionally, such as nocturnal penile tumescence when asleep (that is, when the mind and psychological issues, if any, are less present), tends to suggest that the physical structures are functionally working.[19][20] Similarly, performance with manual stimulation, as well as any performance anxiety or acute situational ED, may indicate a psychogenic component to ED.[1]
ED usually has something physical behind it, particularly in older men. But psychological factors can be a factor in many cases of ED. Experts say stress, depression, poor self-esteem, and performance anxiety can short-circuit the process that leads to an erection. These factors can also make the problem worse in men whose ED stems from something physical.

Capogrosso, P., Colicchia, M., Ventimiglia, E., Castagna, G., Clementi, M. C., Suardi, N., ... Salonia, A. (2013, July). One patient out of four with newly diagnosed erectile dysfunction is a young man — worrisome picture from the everyday clinical practice. The journal of sexual medicine. 10(7), 1833–1841. Retrieved from https://onlinelibrary.wiley.com/doi/full/10.1111/jsm.12179
×