In order to discuss the biochemical diagnosis of hypogonadism it is necessary to outline the usual carriage of testosterone in the blood. Total serum testosterone consists of free testosterone (2%–3%), testosterone bound to sex hormone binding globulin (SHBG) (45%) and testosterone bound to other proteins (mainly albumin −50%) (Dunn et al 1981). Testosterone binds only loosely to albumin and so this testosterone as well as free testosterone is available to tissues and is termed bioavailable testosterone. Testosterone bound to SHBG is tightly bound and is biologically inactive. Bioavailable and free testosterone are known to correlate better than total testosterone with clinical sequelae of androgenization such as bone mineral density and muscle strength (Khosla et al 1998; Roy et al 2002). There is diurnal variation in serum testosterone levels with peak levels seen in the morning following sleep, which can be maintained into the seventh decade (Diver et al 2003). Samples should always be taken in the morning before 11 am to allow for standardization.
Can erectile dysfunction be reversed? Erectile dysfunction (ED) is a very common issue, and it can usually be reversed with lifestyle changes, counseling, medications, or surgery. While short-term treatments are available, addressing the underlying cause will usually resolve the condition. Learn about causes and effective methods of reversing ED here. Read now
In order to establish whether normal erections are occurring overnight (nocturnal erections), the doctor may organise nocturnal penile tumescence (NPT) testing. This involves wearing a monitor overnight in your own home. The data from this monitor is then assessed to analyse how often erections occurred, how long they lasted, and how rigid and large the penis was during the erections. If NPT testing is normal, the cause of erectile dysfunction is usually psychological. If not, further testing of the blood flow in the genital area may be required to see if there is blockage or leakage. The doctor may also organise a blood test of levels of hormones such as testosterone, prolactin and thyroid stimulating hormone to see if these are contributing to the erectile dysfunction.

Some of the effects of testosterone treatment are well recognised and it seems clear that testosterone treatment for aging hypogonadal men can be expected to increase lean body mass, decrease visceral fat mass, increase bone mineral density and decrease total cholesterol. Beneficial effects have been seen in many trials on other parameters such as glycemic control in diabetes, erectile dysfunction, cardiovascular risk factors, angina, mood and cognition. These potentially important effects require confirmation in larger clinical trials. Indeed, it is apparent that longer duration randomized controlled trials of testosterone treatment in large numbers of men are needed to confirm the effects of testosterone on many aspects of aging male health including cardiovascular health, psychiatric health, prostate cancer and functional capacity. In the absence of such studies, it is necessary to balance risk and benefit on the best available data. At the present time the data supports the treatment of hypogonadal men with testosterone to normalize testosterone levels and improve symptoms. Most men with hypogonadism do not have a contraindication to treatment, but it is important to monitor for adverse consequences including prostate complications and polycythemia.
Clinical studies have suggested that these devices are effective and acceptable to a large number of patients with ED of varying causes, including psychogenic erectile failure. These devices are safe and can restore a man’s ability to achieve penetrative intercourse, with one study suggesting nearly 95% success with adequate instruction and support.30 However, satisfaction with this treatment modality typically wanes with time, as patients report dissatisfaction with how cumbersome or unnatural the devices are to use, hinging or buckling of the erection with thrusting, and dissatisfaction with the fact that the erection is ischemic and therefore cold, which can be off-putting to the partner.
Erections are more complicated than you think. Your brain, nerves, heart, blood vessels, and a whole lot of hormones have to work together perfectly or nothing happens. It’s a lot to ask, and sometimes things break down. And while ED happens to most guys at some point in their lives, erectile dysfunction isn’t something you can just ignore and hope it goes away.
Dr. Ronald Swerdloff, chief of the endocrinology division at the Harbor-UCLA Medical Center and a professor of medicine at UCLA's David Geffen School of Medicine, served on the panel of experts who developed the Endocrine Society's guidelines. He is also the principal investigator for one of the 12 sites of The Testosterone Trial in Older Men, a nationwide study funded mainly by the National Institute on Aging. The study of 800 men over age 65 with low testosterone is looking at whether men using AndroGel for one year, compared to placebo, will show improvements in walking speed, sexual activity, vitality, memory, and anemia. The study will be completed in June 2015.
Two of the immediate metabolites of testosterone, 5α-DHT and estradiol, are biologically important and can be formed both in the liver and in extrahepatic tissues.[147] Approximately 5 to 7% of testosterone is converted by 5α-reductase into 5α-DHT, with circulating levels of 5α-DHT about 10% of those of testosterone, and approximately 0.3% of testosterone is converted into estradiol by aromatase.[2][147][153][154] 5α-Reductase is highly expressed in the male reproductive organs (including the prostate gland, seminal vesicles, and epididymides),[155] skin, hair follicles, and brain[156] and aromatase is highly expressed in adipose tissue, bone, and the brain.[157][158] As much as 90% of testosterone is converted into 5α-DHT in so-called androgenic tissues with high 5α-reductase expression,[148] and due to the several-fold greater potency of 5α-DHT as an AR agonist relative to testosterone,[159] it has been estimated that the effects of testosterone are potentiated 2- to 3-fold in such tissues.[160]
In the last few years, a lot of men and women have switched over to a pellet that goes under your skin. This is probably the best way to take testosterone now. The pellet is life-changing for both men and women (the dose for women is much lower than it is for men). Women, you won’t get bulky and grow a beard when you take testosterone to achieve normal levels, but you will probably lean out a little without losing your curves, and your energy and sex drive will be amazing. Female bodybuilders who experience weird scary side effects are taking anabolic steroids.
However, in contrast, a recent systematic review of published studies, the authors concluded that overall, the addition of testosterone to PDE-5 inhibitors might benefit patients with ED associated with testosterone levels of less than 300 ng/dL (10.4 nmol/L) who failed monotherapy. [20] A limitation of existing studies are their heterogeneous nature and methodological drawbacks.
Of particularly concern are antihypertensive medications for CVD (eg, digoxin, disopyramide [Norpace], gemfibrozil [Lopid]), anxiety, depression (eg, lithium, monoamine oxidase inhibitors, selective serotonin reuptake inhibitors, serotonin-norepinephrine reuptake inhibitors, tricyclic antidepressants), or psychosis (eg, chlorpromazine, haloperidol, pimozide [Orap], thioridazine, thiothixene). Antihypertensive drugs, such as diuretics (eg, spironolactone, thiazides) and beta blockers, may be associated with ED. Discontinuation or switching to alternative drugs, such as angiotensin-converting enzyme inhibitors or calcium channel blockers (eg, diltiazem, nifedipine, amlodipine), may reduce ED. The newer angiotensin II receptor antagonists may be less problematic with respect to ED, but long-term data is needed to evaluate this.
Once a complete sexual and medical history has been completed, appropriate laboratory studies should be conducted. In the initial evaluation of ED, sophisticated laboratory testing is rarely necessary. For example, serum testosterone (and sometimes prolactin) is typically only useful when the patient demonstrates hypogonadal features or testicular atrophy, or when clinical history is suggestive. Additional hormonal evaluation may include thyroid stimulating hormone in those with a clinical suspicion of hypothyroidism or appropriate diabetes screening in those presenting with a concern for impaired glucose metabolism. If the patient has not been evaluated with a lipid panel and hyperlipidemia is suspected, measurement and appropriate referral to internal medicine or cardiology is recommended. In most cases, a tentative diagnosis can be established with a complete sexual and medical history, physical examination, and limited or no laboratory testing.
Low testosterone levels can cause mood disturbances, increased body fat, loss of muscle tone, inadequate erections and poor sexual performance, osteoporosis, difficulty with concentration, memory loss and sleep difficulties. Current research suggests that this effect occurs in only a minority (about 2%) of ageing men. However, there is a lot of research currently in progress to find out more about the effects of testosterone in older men and also whether the use of testosterone replacement therapy would have any benefits.
Mental status changes including excess aggression are a well known phenomenon in the context of anabolic steroid abuse (Perry et al 1990). An increase in self-reported aggressive behaviors have also been reported in one double blind placebo controlled trial of testosterone in young hypogonadal men (Finkelstein et al 1997), but this has not been confirmed in other studies (Skakkebaek et al 1981; O’Connor et al 2002). Aggression should therefore be monitored but in our experience is rarely a significant problem during testosterone replacement producing physiological levels.
NO is produced by the enzyme NO synthase (NOS). [13] NOS plays many roles, ranging from homeostasis to immune system regulation. To date, 3 subtypes have been identified: nNOS, iNOS, and eNOS, which are produced by the genes NOS1, NOS2, and NOS3, respectively. This nomenclature is derived from the sources of the original isolates: neuronal tissue (nNOS), immunoactivated macrophage cell lines (iNOS), and vascular endothelium (eNOS). The subtypes are not, however, limited to the tissues from which they were first isolated.
Abnormally high levels of testosterone could be the result of an adrenal gland disorder, or even cancer of the testes. High levels may also occur in less serious conditions. Congenital adrenal hyperplasia, which can affect males and females, is a rare but natural cause for elevated testosterone production. Your doctor may order other tests if your levels are exceedingly high.
The use of anabolic steroids (manufactured androgenic hormones) shuts down the release of luteinising hormone and follicle stimulating hormone secretion from the pituitary gland, which in turn decreases the amount of testosterone and sperm produced within the testes. In men, prolonged exposure to anabolic steroids results in infertility, a decreased sex drive, shrinking of the testes and breast development. Liver damage may result from its prolonged attempts to detoxify the anabolic steroids. Behavioural changes (such as increased irritability) may also be observed. Undesirable reactions also occur in women who take anabolic steroids regularly, as a high concentration of testosterone, either natural or manufactured, can cause masculinisation (virilisation) of women.

If testosterone deficiency occurs during fetal development, then male characteristics may not completely develop. If testosterone deficiency occurs during puberty, a boy’s growth may slow and no growth spurt will be seen. The child may have reduced development of pubic hair, growth of the penis and testes, and deepening of the voice. Around the time of puberty, boys with too little testosterone may also have less than normal strength and endurance, and their arms and legs may continue to grow out of proportion with the rest of their body.
Epidemiological studies have also assessed links between serum testosterone and non-coronary atherosclerosis. A study of over 1000 people aged 55 years and over found an inverse correlation between serum total and bioavailable testosterone and the amount of aortic atherosclerosis in men, as assessed by radiological methods (Hak et al 2002). Increased intima-media thickness (IMT) is an early sign of atherosclerosis and has also been shown to predict cardiovascular mortality (Murakami et al 2005). Cross-sectional studies have found that testosterone levels are negatively correlated with carotid IMT in independently living men aged 74–93 years (van den Beld et al 2003), diabetic men (Fukui et al 2003) and young obese men (De Pergola et al 2003). A 4-year follow up study of the latter population showed that free testosterone was also inversely correlated with the rate of increase of IMT (Muller et al 2004).

The laboratory results should be discussed with the patient and, if possible, with his sexual partner. This educational process allows a review of the basic aspects of the anatomy and physiology of the sexual response and an explanation of the possible etiology and associated risk factors (eg, smoking and the use of various medications). Treatment options and their benefits and risks should be discussed. This type of dialogue allows the patient and physician to cooperate in developing an optimal management strategy.
The FDA recommends that men follow general precautions before taking a medication for ED. Men who are taking medications that contain nitrates, such as nitroglycerin, should NOT use these medications. Taking nitrates with one of these medications can lower blood pressure too much. In addition, men who take tadalafil or vardenfil should use alpha blockers with care and only as instructed by their physician, as they could result in hypotension (abnormally low blood pressure). Experts recommend that men have a complete medical history and physical examination to determine the cause of ED. Men should tell their doctor about all the medications they are taking, including over-the-counter medications.
Important future developments will include selective androgen receptor modulators (SARMs). These drugs will be able to produce isolated effects of testosterone at androgen receptors. They are likely to become useful clinical drugs, but their initial worth may lie in facilitating research into the relative importance of testosterone’s action at the androgen receptor compared to at other sites or after conversion to other hormones. Testosterone will remain the treatment of choice for late onset hypogonadism for some time to come.
Penile erection is managed by two mechanisms: the reflex erection, which is achieved by directly touching the penile shaft, and the psychogenic erection, which is achieved by erotic or emotional stimuli. The former uses the peripheral nerves and the lower parts of the spinal cord, whereas the latter uses the limbic system of the brain. In both cases, an intact neural system is required for a successful and complete erection. Stimulation of the penile shaft by the nervous system leads to the secretion of nitric oxide (NO), which causes the relaxation of smooth muscles of corpora cavernosa (the main erectile tissue of penis), and subsequently penile erection. Additionally, adequate levels of testosterone (produced by the testes) and an intact pituitary gland are required for the development of a healthy erectile system. As can be understood from the mechanisms of a normal erection, impotence may develop due to hormonal deficiency, disorders of the neural system, lack of adequate penile blood supply or psychological problems.[18] Spinal cord injury causes sexual dysfunction including ED. Restriction of blood flow can arise from impaired endothelial function due to the usual causes associated with coronary artery disease, but can also be caused by prolonged exposure to bright light.
×