Testosterone replacement therapy may improve energy, mood, and bone density, increase muscle mass and weight, and heighten sexual interest in older men who may have deficient levels of testosterone. Testosterone supplementation is not recommended for men who have normal testosterone levels for their age group due to the risk of prostate enlargement and other side effects. Testosterone replacement therapy is available as a cream or gel, topical solution, skin patch, injectable form and pellet form placed under the skin.
Conflicting results have been obtained concerning the importance of testosterone in maintaining cardiovascular health.[29][30] Nevertheless, maintaining normal testosterone levels in elderly men has been shown to improve many parameters that are thought to reduce cardiovascular disease risk, such as increased lean body mass, decreased visceral fat mass, decreased total cholesterol, and glycemic control.[31]
Sexual functioning involves a complex interaction among biologic, sociocultural, and psychological factors, and the complexity of this interaction makes it difficult to ascertain the clinical etiology of sexual dysfunction. Before any diagnosis of sexual dysfunction is made, problems that are explained by a nonsexual mental disorder or other stressors must first be addressed. Thus, in addition to the criteria for erectile disorder, the following must be considered:

A large number of trials have demonstrated a positive effect of testosterone treatment on bone mineral density (Katznelson et al 1996; Behre et al 1997; Leifke et al 1998; Snyder et al 2000; Zacharin et al 2003; Wang, Cunningham et al 2004; Aminorroaya et al 2005; Benito et al 2005) and bone architecture (Benito et al 2005). These effects are often more impressive in longer trials, which have shown that adequate replacement will lead to near normal bone density but that the full effects may take two years or more (Snyder et al 2000; Wang, Cunningham et al 2004; Aminorroaya et al 2005). Three randomized placebo-controlled trials of testosterone treatment in aging males have been conducted (Snyder et al 1999; Kenny et al 2001; Amory et al 2004). One of these studies concerned men with a mean age of 71 years with two serum testosterone levels less than 12.1nmol/l. After 36 months of intramuscular testosterone treatment or placebo, there were significant increases in vertebral and hip bone mineral density. In this study, there was also a significant decrease in the bone resorption marker urinary deoxypyridinoline with testosterone treatment (Amory et al 2004). The second study contained men with low bioavailable testosterone levels and an average age of 76 years. Testosterone treatment in the form of transdermal patches was given for 1 year. During this trial there was a significant preservation of hip bone mineral density with testosterone treatment but testosterone had no effect on bone mineral density at other sites including the vertebrae. There were no significant alterations in bone turnover markers during testosterone treatment (Kenny et al 2001). The remaining study contained men of average age 73 years. Men were eligible for the study if their serum total testosterone levels were less than 16.5 nmol/L, meaning that the study contained men who would usually be considered eugonadal. The beneficial effects of testosterone on bone density were confined to the men who had lower serum testosterone levels at baseline and were seen only in the vertebrae. There were no significant changes in bone turnover markers. Testosterone in the trial was given via scrotal patches for a 36 month duration (Snyder et al 1999). A recent meta-analysis of the effects on bone density of testosterone treatment in men included data from these studies and two other randomized controlled trials. The findings were that testosterone produces a significant increase of 2.7% in the bone mineral density at the lumber spine but no overall change at the hip (Isidori et al 2005). These results from randomized controlled trials in aging men show much smaller benefits of testosterone treatment on bone density than have been seen in other trials. This could be due to the trials including patients who are not hypogonadal and being too short to allow for the maximal effects of testosterone. The meta-analysis also assessed the data concerning changes of bone formation and resorption markers during testosterone treatment. There was a significant decrease in bone resorption markers but no change in markers of bone formation suggesting that reduction of bone resorption may be the primary mode of action of testosterone in improving bone density (Isidori et al 2005).


The doctor regularly measured my levels to be sure they were within the normal range for a male my age. In other words, I wasn’t taking ‘roids to get big; I was getting control of hormones that were not functioning well. This is how you should look at testosterone therapy – it is a gentle nudge to help you be in normal ranges, not a big push to get you huuu-yge. If you’re like me, you want “normal ranges” of a 27-year-old, not of a 60-year-old. It’s my plan to keep my testosterone where it is now (around 700) no matter what it takes. Right now, the Bulletproof Diet and the other biohacks I’ve written about do that! I’m 43.
Testosterone is a steroid from the androstane class containing a keto and hydroxyl groups at the three and seventeen positions respectively. It is biosynthesized in several steps from cholesterol and is converted in the liver to inactive metabolites.[5] It exerts its action through binding to and activation of the androgen receptor.[5] In humans and most other vertebrates, testosterone is secreted primarily by the testicles of males and, to a lesser extent, the ovaries of females. On average, in adult males, levels of testosterone are about 7 to 8 times as great as in adult females.[6] As the metabolism of testosterone in males is greater, the daily production is about 20 times greater in men.[7][8] Females are also more sensitive to the hormone.[9] 

Men with medical conditions that may cause a sustained erection, such as sickle cell anemia, leukemia, or multiple myeloma, or a man who has an abnormally-shaped penis, may not benefit from these medications. Also, men with liver diseases or a disease of the retina, such as macular degeneration or retinitis pigmentosa, may not be able to take these medications, or may need to take the lowest dosage.

In a randomized double-blind, parallel, placebo-controlled trial, sildenafil plus testosterone was not superior to sildenafil plus placebo in improving erectile function in men with ED and low testosterone levels. [19] The objective of the study was to determine whether the addition of testosterone to sildenafil therapy improves erectile response in men with ED and low testosterone levels.
Health Tools Baby Due Date CalculatorBasal Metabolic Rate CalculatorBody Mass Index (BMI) CalculatorCalories Burned CalculatorChild Energy Requirements CalculatorDaily Calcium Requirements CalculatorDaily Fibre Requirements CalculatorIdeal Weight CalculatorInfectious Diseases Exclusion Periods ToolOvulation CalculatorSmoking Cost CalculatorTarget Heart Rate CalculatorWaist-to-hip Ratio Calculator Risk Tests Depression Self-AssessmentErectile Dysfunction ToolMacular Degeneration ToolOsteoporosis Risk TestProstate Symptoms Self-Assessment

Diabetes is an example of an endocrine disease that can cause a person to experience impotence. Diabetes affects the body’s ability to utilize the hormone insulin. One of the side effects associated with chronic diabetes is nerve damage. This affects penis sensations. Other complications associated with diabetes are impaired blood flow and hormone levels. Both of these factors can contribute to impotence.
×