Changes in body composition are seen with aging. In general terms, aging males are prone to loss of muscle mass and a gain in fat mass, especially in the form of visceral or central fat. An epidemiological study of community dwelling men aged between 24 and 85 years has confirmed that total and free testosterone levels are inversely correlated with waist circumference and that testosterone levels are specifically related to this measure of central obesity rather than general obesity (Svartberg, von Muhlen, Sundsfjord et al 2004). Prospective studies show that testosterone levels predict future development of central obesity (Khaw and Barrett-Connor 1992; Tsai et al 2000). Reductions in free testosterone also correlate with age related declines in fat free mass (muscle mass) and muscle strength (Baumgartner et al 1999; Roy et al 2002). Studies in hypogonadal men confirm an increase in fat mass and decrease in fat free mass versus comparable eugonadal men (Katznelson et al 1998). Taken together, the epidemiological data suggest that a hypogonadal state promotes loss of muscle mass and a gain in fat mass, particularly visceral fat and therefore mimics the changes of ‘normal’ aging.
Present in much greater levels in men than women, testosterone initiates the development of the male internal and external reproductive organs during foetal development and is essential for the production of sperm in adult life. This hormone also signals the body to make new blood cells, ensures that muscles and bones stay strong during and after puberty and enhances libido both in men and women. Testosterone is linked to many of the changes seen in boys during puberty (including an increase in height, body and pubic hair growth, enlargement of the penis, testes and prostate gland, and changes in sexual and aggressive behaviour). It also regulates the secretion of luteinising hormone and follicle stimulating hormone. To effect these changes, testosterone is often converted into another androgen called dihydrotestosterone. 
Treatment involves addressing the underlying causes, lifestyle modifications, and addressing psychosocial issues.[1] In many cases, a trial of pharmacological therapy with a PDE5 inhibitor, such as sildenafil, can be attempted. In some cases, treatment can involve inserting prostaglandin pellets into the urethra, injecting smooth muscle relaxants and vasodilators into the penis, a penile prosthesis, a penis pump, or vascular reconstructive surgery.[1][2] It is the most common sexual problem in men.[3]

These "disease-awareness" campaigns—ostensibly a public service intended to educate those potentially at risk about a condition they may not even have heard of but "could" have—are subtle, even insidious. They may not mention a specific product, but a bit of sleuthing reveals that their sponsors are usually pharmaceutical companies that "just happen" to manufacture products used to treat the real (or at least alleged) condition.


Mental status changes including excess aggression are a well known phenomenon in the context of anabolic steroid abuse (Perry et al 1990). An increase in self-reported aggressive behaviors have also been reported in one double blind placebo controlled trial of testosterone in young hypogonadal men (Finkelstein et al 1997), but this has not been confirmed in other studies (Skakkebaek et al 1981; O’Connor et al 2002). Aggression should therefore be monitored but in our experience is rarely a significant problem during testosterone replacement producing physiological levels.

Men can experience a range of symptoms if testosterone decreases more than it should. Low testosterone, or low T, is diagnosed when levels fall below 300 nanograms per deciliter (ng/dL). A normal range is typically 300–1000 ng/dL, according to the U.S. Food and Drug Administration. A blood test called a serum testosterone test is used to determine your level of circulating testosterone.


An international consensus document was recently published and provides guidance on the diagnosis, treatment and monitoring of late-onset hypogonadism (LOH) in men. The diagnosis of LOH requires biochemical and clinical components. Controversy in defining the clinical syndrome continues due to the high prevalence of hypogonadal symptoms in the aging male population and the non-specific nature of these symptoms. Further controversy surrounds setting a lower limit of normal testosterone, the limitations of the commonly available total testosterone result in assessing some patients and the unavailability of reliable measures of bioavailable or free testosterone for general clinical use. As with any clinical intervention testosterone treatment should be judged on a balance of risk versus benefit. The traditional benefits of testosterone on sexual function, mood, strength and quality of life remain the primary goals of treatment but possible beneficial effects on other parameters such as bone density, obesity, insulin resistance and angina are emerging and will be reviewed. Potential concerns regarding the effects of testosterone on prostate disease, aggression and polycythaemia will also be addressed. The options available for treatment have increased in recent years with the availability of a number of testosterone preparations which can reliably produce physiological serum concentrations.

Testosterone is included in the World Health Organization's list of essential medicines, which are the most important medications needed in a basic health system.[172] It is available as a generic medication.[10] The price depends on the form of testosterone used.[173] It can be administered as a cream or transdermal patch that is applied to the skin, by injection into a muscle, as a tablet that is placed in the cheek, or by ingestion.[10]
Instead of the hesitation with which he had accosted the cardinal a quarter of an hour before, there might be read in the eyes of the young king that will against which a struggle might be maintained, and which might be crushed by its own impotence, but which, at least, would preserve, like a wound in the depth of the heart, the remembrance of its defeat.
Sexual stimulation causes the release of neurotransmitters from cavernosal nerve endings and relaxation factors from endothelial cells lining the sinusoids. NOS produces NO from L-arginine, and this, in turn, produces other muscle-relaxing chemicals, such as cGMP and cyclic adenosine monophosphate (cAMP), which work via calcium channel and protein kinase mechanisms (see the image below). This results in the relaxation of smooth muscle in the arteries and arterioles that supply the erectile tissue, producing a dramatic increase in penile blood flow.
Many experts believe that atrophy, a partial or complete wasting away of tissue, and fibrosis, the growth of excess tissue, of the smooth muscle tissue in the body of the penis (cavernous smooth muscle) triggers problems with being able to maintain a firm erection. Poor ability to maintain an erection is often an early symptom of erectile dysfunction. Although the condition is called venous leak, the real problem is not with the veins but malfunction of the smooth muscle that surrounds the veins. The end result is difficulty with maintain a firm erection (losing an erection too quickly) that is now believe to be an early manifestation of atherosclerosis and vascular disease.

It appears that testosterone has NOS-independent pathways as well. In one study, castrated rats were implanted with testosterone pellets and then divided into a group that received an NOS inhibitor (L-nitro-L-arginine methyl ester [L-NAME]) and a control group that received no enzyme. [24] The castrated rats that were given testosterone pellets and L-NAME still had partial erections, a result suggesting the presence of a pathway independent of NOS activity.
An international consensus document was recently published and provides guidance on the diagnosis, treatment and monitoring of late-onset hypogonadism (LOH) in men. The diagnosis of LOH requires biochemical and clinical components. Controversy in defining the clinical syndrome continues due to the high prevalence of hypogonadal symptoms in the aging male population and the non-specific nature of these symptoms. Further controversy surrounds setting a lower limit of normal testosterone, the limitations of the commonly available total testosterone result in assessing some patients and the unavailability of reliable measures of bioavailable or free testosterone for general clinical use. As with any clinical intervention testosterone treatment should be judged on a balance of risk versus benefit. The traditional benefits of testosterone on sexual function, mood, strength and quality of life remain the primary goals of treatment but possible beneficial effects on other parameters such as bone density, obesity, insulin resistance and angina are emerging and will be reviewed. Potential concerns regarding the effects of testosterone on prostate disease, aggression and polycythaemia will also be addressed. The options available for treatment have increased in recent years with the availability of a number of testosterone preparations which can reliably produce physiological serum concentrations.
In the short term, alcohol relaxes muscles in the penis, letting blood to flow in (which is a good thing). However, alcohol also prevents other blood vessels from closing and trapping all the extra blood. Erections depend on trapping increased blood flow in the erectile tissue of the penis. If you don’t trap that extra blood, you don’t get an erection. In the long run, excessive alcohol consumption can cause liver scarring, high blood pressure, and can damage your blood vessels resulting in erectile dysfunction.
This penile tumescence monitor is placed at the base and near the corona of the penis. It is connected to a monitor that records a continuous graph depicting the force and duration of erections that occur during sleep. The monitor is strapped to the leg. The nocturnal penile tumescence test is conducted on several nights to obtain an accurate indication of erections that normally occur during the alpha phase of sleep.
The vascular processes that produce an erection are controlled by the nervous system and certain prescription medications may have the side effect of interfering with necessary nerve signals. Among the possible culprits are a variety of stimulants, sedatives, diuretics, antihistamines, and drugs to treat high blood pressure, cancer, or depression. But never stop a medication unless your doctor tells you to. In addition, alcohol, tobacco, and illegal drugs, such as marijuana, may contribute to the dysfunction.
^ Butenandt A, Hanisch G (1935). "Umwandlung des Dehydroandrosterons in Androstendiol und Testosterone; ein Weg zur Darstellung des Testosterons aus Cholestrin" [About Testosterone. Conversion of Dehydro-androsterons into androstendiol and testosterone; a way for the structure assignment of testosterone from cholesterol]. Hoppe-Seyler's Z Physiol Chem (in German). 237 (2): 89–97. doi:10.1515/bchm2.1935.237.1-3.89.
Acupuncture may help treat psychological ED, though studies are limited and inconclusive. You’ll likely need several appointments before you begin to notice any improvements. When choosing an acupuncturist, look for a certified practitioner who uses disposable needles and follows U.S. Food and Drug Administration guidelines for needle disposal and sterilization.
Several treatments were promoted in the pre-PGE1, pre-prostaglandin era, including yohimbine, trazodone, testosterone, and various herbal remedies. None of these is currently recommended under the updated American Urological Association Guidelines for the Treatment of Erectile Dysfunction.15 Testosterone supplementation is only recommended for men with low testosterone levels.
If testosterone deficiency occurs during fetal development, then male characteristics may not completely develop. If testosterone deficiency occurs during puberty, a boy’s growth may slow and no growth spurt will be seen. The child may have reduced development of pubic hair, growth of the penis and testes, and deepening of the voice. Around the time of puberty, boys with too little testosterone may also have less than normal strength and endurance, and their arms and legs may continue to grow out of proportion with the rest of their body.
Epidemiological data has associated low testosterone levels with atherogenic lipid parameters, including lower HDL cholesterol (Lichtenstein et al 1987; Haffner et al 1993; Van Pottelbergh et al 2003) and higher total cholesterol (Haffner et al 1993; Van Pottelbergh et al 2003), LDL cholesterol (Haffner et al 1993) and triglyceride levels (Lichtenstein et al 1987; Haffner et al 1993). Furthermore, these relationships are independent of other factors such as age, obesity and glucose levels (Haffner et al 1993; Van Pottelbergh et al 2003). Interventional trails of testosterone replacement have shown that treatment causes a decrease in total cholesterol. A recent meta-analysis of 17 randomized controlled trials confirmed this and found that the magnitude of changes was larger in trials of patients with lower baseline testosterone levels (Isidori et al 2005). The same meta-analysis found no significant overall change in LDL or HDL cholesterol levels but in trials with baseline testosterone levels greater than 10 nmol/l, there was a small reduction in HDL cholesterol with testosterone treatment.
×