Research shows little evidence of abnormal or unhealthy psychological changes in men receiving supervised testosterone therapy to treat their low T, according to a study in the journal Therapeutics and Clinical Risk Management.However, mental and physical risks are involved in self-administration of artificial testosterone. Anyone abusing synthetic testosterone, also known as anabolic steroids, may experience episodes of aggressive or violent behavior, along with physical side effects. Bodybuilders, athletes, or anyone who seeks to build muscle mass or achieve other benefits from artificial testosterone should be aware of these risks.
It doesn’t get more natural than getting a good night’s sleep. Research published in the Journal of the American Medical Association showed that lack of sleep can greatly reduce a healthy young man’s testosterone levels. That effect is clear after only one week of reduced sleep. Testosterone levels were particularly low between 2 and 10 p.m. on sleep-restricted days. Study participants also reported a decreased sense of wellbeing as their blood testosterone levels dropped.
A large number of trials have demonstrated a positive effect of testosterone treatment on bone mineral density (Katznelson et al 1996; Behre et al 1997; Leifke et al 1998; Snyder et al 2000; Zacharin et al 2003; Wang, Cunningham et al 2004; Aminorroaya et al 2005; Benito et al 2005) and bone architecture (Benito et al 2005). These effects are often more impressive in longer trials, which have shown that adequate replacement will lead to near normal bone density but that the full effects may take two years or more (Snyder et al 2000; Wang, Cunningham et al 2004; Aminorroaya et al 2005). Three randomized placebo-controlled trials of testosterone treatment in aging males have been conducted (Snyder et al 1999; Kenny et al 2001; Amory et al 2004). One of these studies concerned men with a mean age of 71 years with two serum testosterone levels less than 12.1nmol/l. After 36 months of intramuscular testosterone treatment or placebo, there were significant increases in vertebral and hip bone mineral density. In this study, there was also a significant decrease in the bone resorption marker urinary deoxypyridinoline with testosterone treatment (Amory et al 2004). The second study contained men with low bioavailable testosterone levels and an average age of 76 years. Testosterone treatment in the form of transdermal patches was given for 1 year. During this trial there was a significant preservation of hip bone mineral density with testosterone treatment but testosterone had no effect on bone mineral density at other sites including the vertebrae. There were no significant alterations in bone turnover markers during testosterone treatment (Kenny et al 2001). The remaining study contained men of average age 73 years. Men were eligible for the study if their serum total testosterone levels were less than 16.5 nmol/L, meaning that the study contained men who would usually be considered eugonadal. The beneficial effects of testosterone on bone density were confined to the men who had lower serum testosterone levels at baseline and were seen only in the vertebrae. There were no significant changes in bone turnover markers. Testosterone in the trial was given via scrotal patches for a 36 month duration (Snyder et al 1999). A recent meta-analysis of the effects on bone density of testosterone treatment in men included data from these studies and two other randomized controlled trials. The findings were that testosterone produces a significant increase of 2.7% in the bone mineral density at the lumber spine but no overall change at the hip (Isidori et al 2005). These results from randomized controlled trials in aging men show much smaller benefits of testosterone treatment on bone density than have been seen in other trials. This could be due to the trials including patients who are not hypogonadal and being too short to allow for the maximal effects of testosterone. The meta-analysis also assessed the data concerning changes of bone formation and resorption markers during testosterone treatment. There was a significant decrease in bone resorption markers but no change in markers of bone formation suggesting that reduction of bone resorption may be the primary mode of action of testosterone in improving bone density (Isidori et al 2005). provides accurate and independent information on more than 24,000 prescription drugs, over-the-counter medicines and natural products. This material is provided for educational purposes only and is not intended for medical advice, diagnosis or treatment. Data sources include IBM Watson Micromedex (updated Jan 9th, 2019), Cerner Multum™ (updated Jan 14th, 2019), Wolters Kluwer™ (updated Jan 7th, 2019) and others. To view content sources and attributions, please refer to our editorial policy.
One of the first steps is to distinguish between physiological and psychological ED. Determining whether involuntary erections are present is important in eliminating the possibility of psychogenic causes for ED.[1] Obtaining full erections occasionally, such as nocturnal penile tumescence when asleep (that is, when the mind and psychological issues, if any, are less present), tends to suggest that the physical structures are functionally working.[19][20] Similarly, performance with manual stimulation, as well as any performance anxiety or acute situational ED, may indicate a psychogenic component to ED.[1]

Capogrosso, P., Colicchia, M., Ventimiglia, E., Castagna, G., Clementi, M. C., Suardi, N., ... Salonia, A. (2013, July). One patient out of four with newly diagnosed erectile dysfunction is a young man — worrisome picture from the everyday clinical practice. The journal of sexual medicine. 10(7), 1833–1841. Retrieved from
However, testosterone is only one of many factors that aid in adequate erections. Research is inconclusive regarding the role of testosterone replacement in the treatment of erectile dysfunction. In a review of studies that looked at the benefit of testosterone in men with erection difficulties, nearly half showed no improvement with testosterone treatment. Many times, other health problems play a role in erectile difficulties. These can include:
^ Butenandt A, Hanisch G (1935). "Umwandlung des Dehydroandrosterons in Androstendiol und Testosterone; ein Weg zur Darstellung des Testosterons aus Cholestrin" [About Testosterone. Conversion of Dehydro-androsterons into androstendiol and testosterone; a way for the structure assignment of testosterone from cholesterol]. Hoppe-Seyler's Z Physiol Chem (in German). 237 (2): 89–97. doi:10.1515/bchm2.1935.237.1-3.89.
Her remark was entirely destructive of poetry, since it was to the effect that poetry had nothing whatever to do with her; all her friends spent their lives in making up phrases, she said; all his feeling was an illusion, and next moment, as if to taunt him with his impotence, she had sunk into one of those dreamy states which took no account whatever of his existence.
In some cases, ED can be a warning sign of more serious disease. One study suggests ED is a strong predictor of heart attack, stroke, and death from cardiovascular disease. The researchers say all men diagnosed with ED should be evaluated for cardiovascular disease. This does not mean every man with ED will develop heart disease, or that every man with heart disease has ED, but patients should be aware of the link.
Toggle navigationNewsConditionsConditionsADHDAllergic rhinitisAlzheimer's diseaseAnxietyArthritisAsthmaAutismBowel cancerBreast cancerCancerChesty coughsChickenpoxChlamydiaCholesterolCoeliac diseaseCommon coldConstipationCOPDDepressionDiabetesDiverticulitisEpilepsyFatty liverFibromyalgiaGenital herpesGORD (reflux)GoutHaemorrhoidsHair lossHeart attackHepatitisHiatus herniaHigh blood pressureHIV and AIDSImpotenceMenopauseMigraineNeuropathic painOsteoporosisPainPeptic ulcersPneumoniaProstate cancerScabiesSchizophreniaSciaticaShinglesSinusitisSkin cancerStrokeThyroid gland disordersUrticaria (hives)Vaginal thrushVasectomyVertigoVulval problemsWhooping coughMedicinesMedicinesAugmentinAvilChlorsigDaklinzaDuromineEndepEndoneHarvoniLevlenLyricaMersyndolMetrogylPanadeine FortePanefcortelonePrimolutRestavitSovaldiStemetilViagraZentelFind a MedicineMedicines CentreSymptomsSymptomsBack painChildhood rashesCommon coldDepressionFeverFibromyalgiaHeart attackHeel painHerpesLeg acheLeg crampsSciaticaShinglesStrokeVaginal thrushVertigoMore symptomsLifestyleHealthy LifestyleAddictionsAlcoholCholesterolExerciseHealthy eatingHealthy WeightHeart healthImmunisationSleepSmokingStress Health Centres Nutrition & WeightSports & FitnessTools Medical Dictionary Medical Dictionary
Erectile dysfunction (ED) is the inability to get and keep an erection firm enough for sexual intercourse. Estimates suggest that one of every 10 men will suffer from ED at some point during his lifetime. It is important to understand that in most cases, ED is a symptom of another, underlying problem. ED is not considered normal at any age, and may be associated with other problems that interfere with sexual intercourse, such as lack of desire and problems with orgasm and ejaculation.
During the second trimester, androgen level is associated with sex formation.[13] This period affects the femininization or masculinization of the fetus and can be a better predictor of feminine or masculine behaviours such as sex typed behaviour than an adult's own levels. A mother's testosterone level during pregnancy is correlated with her daughter's sex-typical behavior as an adult, and the correlation is even stronger than with the daughter's own adult testosterone level.[14]
Free testosterone (T) is transported into the cytoplasm of target tissue cells, where it can bind to the androgen receptor, or can be reduced to 5α-dihydrotestosterone (DHT) by the cytoplasmic enzyme 5α-reductase. DHT binds to the same androgen receptor even more strongly than testosterone, so that its androgenic potency is about 5 times that of T.[110] The T-receptor or DHT-receptor complex undergoes a structural change that allows it to move into the cell nucleus and bind directly to specific nucleotide sequences of the chromosomal DNA. The areas of binding are called hormone response elements (HREs), and influence transcriptional activity of certain genes, producing the androgen effects.
Some men report being helped by an oral medication called yohimbine, which comes from the bark of a tree that grows in India and Africa. This drug, which needs to be taken every day, has been reported to help about 20 to 25 percent of the men taking it. A relatively new but widely used oral medication called Viagra requires a careful medical evaluation by your doctor.
Findings that improvements in serum glucose, serum insulin, insulin resistance or glycemic control, in men treated with testosterone are accompanied by reduced measures of central obesity, are in line with other studies showing a specific effect of testosterone in reducing central or visceral obesity (Rebuffe-Scrive et al 1991; Marin, Holmang et al 1992). Furthermore, studies that have shown neutral effects of testosterone on glucose metabolism have not measured (Corrales et al 2004), or shown neutral effects (Lee et al 2005) (Tripathy et al 1998; Bhasin et al 2005) on central obesity. Given the known association of visceral obesity with insulin resistance, it is possible that testosterone treatment of hypogonadal men acts to improve insulin resistance and diabetes through an effect in reducing central obesity. This effect can be explained by the action of testosterone in inhibiting lipoprotein lipase and thereby reducing triglyceride uptake into adipocytes (Sorva et al 1988), an action which seems to occur preferentially in visceral fat (Marin et al 1995; Marin et al 1996). Visceral fat is thought to be more responsive to hormonal changes due to a greater concentration of androgen receptors and increased vascularity compared with subcutaneous fat (Bjorntorp 1996). Further explanation of the links between hypogonadism and obesity is offered by the hypogonadal-obesity-adipocytokine cycle hypothesis (see Figure 1). In this model, increases in body fat lead to increases in aromatase levels, in addition to insulin resistance, adverse lipid profiles and increased leptin levels. Increased action of aromatase in metabolizing testosterone to estrogen, reduces testosterone levels which induces further accumulation of visceral fat. Higher leptin levels and possibly other factors, act at the pituitary to suppress gonadotrophin release and exacerbate hypogonadism (Cohen 1999; Kapoor et al 2005). Leptin has also been shown to reduce testosterone secretion from rodent testes in vitro (Tena-Sempere et al 1999). A full review of the relationship between testosterone, insulin resistance and diabetes can be found elsewhere (Kapoor et al 2005; Jones 2007).
"By expanding the boundaries of this disease to common symptoms in aging males, such as fatigue and reduced libido, drug companies seek to increase their markets and boost their sales," wrote Barbara Mintzes, an assistant professor at the University of British Columbia School of Public Health, and Agnes Vitry, a senior research fellow at the University of South Australia, in a 2012 article in the Medical Journal of Australia .

Type 2 diabetes is an important condition in terms of morbidity and mortality, and the prevalence is increasing in the developed and developing world. The prevalence also increases with age. Insulin resistance is a primary pathological feature of type 2 diabetes and predates the onset of diabetes by many years, during which time raised serum insulin levels compensate and maintain normoglycemia. Insulin resistance and/or impaired glucose tolerance are also part of the metabolic syndrome which also comprises an abnormal serum lipid profile, central obesity and hypertension. The metabolic syndrome can be considered to be a pre-diabetic condition and is itself linked to cardiovascular mortality. Table 1 shows the three commonly used definitions of the metabolic syndrome as per WHO, NCEPIII and IDF respectively (WHO 1999; NCEPIII 2001; Zimmet et al 2005).