Other factors leading to erectile dysfunction are diabetes mellitus, which is a well-known cause of neuropathy).[1] ED is also related to generally poor physical health, poor dietary habits, obesity, and most specifically cardiovascular disease, such as coronary artery disease and peripheral vascular disease.[1] Screening for cardiovascular risk factors, such as smoking, dyslipidemia, hypertension, and alcoholism is helpful.[1]

The views expressed in this article intend to highlight alternative studies and induce conversation. They are the views of the author and do not necessarily represent the views of hims, and are for informational purposes only, even if and to the extent that this article features the advice of physicians and medical practitioners. This article is not, nor is it intended to be, a substitute for professional medical advice, diagnosis, or treatment, and should never be relied upon for specific medical advice.
Overall, it seems that both estrogen and testosterone are important for normal bone growth and maintenance. Deficiency or failure of action of the sex hormones is associated with osteoporosis and minimal trauma fractures. Estrogen in males is produced via metabolism of testosterone by aromatase and it is therefore important that androgens used for the treatment of hypogonadism be amenable to the action of aromatase to yield maximal positive effects on bone. There is data showing that testosterone treatment increases bone mineral density in aging males but that these benefits are confined to hypogonadal men. The magnitude of this improvement is greater in the spine than in the hip and further studies are warranted to confirm or refute any differential effects of testosterone at these important sites. Improvements seen in randomized controlled trials to date may underestimate true positive effects due to relatively short duration and/or baseline characteristics of the patients involved. There is no data as yet to confirm that the improvement in bone density with testosterone treatment reduces fractures in men and this is an important area for future study.
Overall, it seems that both estrogen and testosterone are important for normal bone growth and maintenance. Deficiency or failure of action of the sex hormones is associated with osteoporosis and minimal trauma fractures. Estrogen in males is produced via metabolism of testosterone by aromatase and it is therefore important that androgens used for the treatment of hypogonadism be amenable to the action of aromatase to yield maximal positive effects on bone. There is data showing that testosterone treatment increases bone mineral density in aging males but that these benefits are confined to hypogonadal men. The magnitude of this improvement is greater in the spine than in the hip and further studies are warranted to confirm or refute any differential effects of testosterone at these important sites. Improvements seen in randomized controlled trials to date may underestimate true positive effects due to relatively short duration and/or baseline characteristics of the patients involved. There is no data as yet to confirm that the improvement in bone density with testosterone treatment reduces fractures in men and this is an important area for future study.
If testosterone deficiency occurs during fetal development, then male characteristics may not completely develop. If testosterone deficiency occurs during puberty, a boy’s growth may slow and no growth spurt will be seen. The child may have reduced development of pubic hair, growth of the penis and testes, and deepening of the voice. Around the time of puberty, boys with too little testosterone may also have less than normal strength and endurance, and their arms and legs may continue to grow out of proportion with the rest of their body.
Dr. Ronald Swerdloff, chief of the endocrinology division at the Harbor-UCLA Medical Center and a professor of medicine at UCLA's David Geffen School of Medicine, served on the panel of experts who developed the Endocrine Society's guidelines. He is also the principal investigator for one of the 12 sites of The Testosterone Trial in Older Men, a nationwide study funded mainly by the National Institute on Aging. The study of 800 men over age 65 with low testosterone is looking at whether men using AndroGel for one year, compared to placebo, will show improvements in walking speed, sexual activity, vitality, memory, and anemia. The study will be completed in June 2015.
The neurovascular events that ultimately occur result in the inhibition of adrenergic tone and the release of the nonadrenergic, noncholinergic neurotransmitter, nitric oxide. Nitric oxide is believed to be released from nonadrenergic, noncholinergic nerves and endothelial cells. It subsequently stimulates the guanylate cyclase enzyme system in penile smooth muscle. This results in increased levels of cyclic guanosine monophosphate (cGMP) and ultimately in smooth muscle relaxation, enhancement of arterial inflow, and veno-occlusion, producing adequate firmness for sexual activity.
Patients with both ED and cardiovascular disease who receive treatment with an oral PDE5 inhibitor require education regarding what to do if anginal episodes develop while the drug is in their system. Such education includes stressing the importance of alerting emergency care providers to the presence of the drug so that nitrate treatment is avoided.
There are risks to prosthetic surgery and patients are counselled before the procedure. If there is a post-operative infection, the implant will likely be removed. The devices are reliable, but in the case of mechanical malfunction, the device or a part of the device will need to be replaced surgically. If a penile prosthesis is removed, other non-surgical treatments may no longer work.

One study examined the role of testosterone supplementation in hypogonadal men with ED. These men were considered nonresponders to sildenafil, and their erections were monitored by assessing nocturnal penile tumescence (NPT). After these men were given testosterone transdermally for 6 months, the number of NPTs increased, as did the maximum rigidity with sildenafil. [18] This study suggests that a certain level of testosterone may be necessary for PDE5 inhibitors to function properly.
Erectile dysfunction (ED) affects 50% of men older than 40 years, [4] exerting substantial effects on quality of life. [5] This common problem is complex and involves multiple pathways. Penile erections are produced by an integration of physiologic processes involving the central nervous, peripheral nervous, hormonal, and vascular systems. Any abnormality in these systems, whether from medication or disease, has a significant impact on the ability to develop and sustain an erection, ejaculate, and experience orgasm.

"Bring back the younger inner you," says the Low T Center. According to its website, its president, Mr. (notably not "Dr.") Mike Sisk, "created these centers out of a need." They promise their testosterone injections "do not just help boost a low sex drive but can also boost energy, decrease body fat, irritability, and depression." They go so far as to claim that "research finds testosterone replacement can solve long-term health issues like Alzheimer's and heart disease."
In accordance with sperm competition theory, testosterone levels are shown to increase as a response to previously neutral stimuli when conditioned to become sexual in male rats.[40] This reaction engages penile reflexes (such as erection and ejaculation) that aid in sperm competition when more than one male is present in mating encounters, allowing for more production of successful sperm and a higher chance of reproduction.

Cross-sectional studies have not shown raised testosterone levels at the time of diagnosis of prostate cancer, and in fact, low testosterone at the time of diagnosis has been linked with more locally aggressive and malignant tumors (Massengill et al 2003; Imamoto et al 2005; Isom-Batz et al 2005). This may reflect loss of hormone related control of the tumor or the effect of a more aggressive tumor in decreasing testosterone levels. One study found that 14% of hypogonadal men, with normal digital rectal examination and PSA levels, had histological prostate cancer on biopsy. It is possible that low androgen levels masked the usual evidence of prostate cancer in this population (Morgentaler et al 1996). Most longitudinal studies have not shown a correlation between testosterone levels and the future development of prostate cancer (Carter et al 1995; Heikkila et al 1999; Stattin et al 2004) but a recent study did find a positive association (Parsons et al 2005). Interpretation of such data requires care, as the presentation of prostate cancer could be altered or delayed in patients with lower testosterone levels.

Low testosterone levels can cause mood disturbances, increased body fat, loss of muscle tone, inadequate erections and poor sexual performance, osteoporosis, difficulty with concentration, memory loss and sleep difficulties. Current research suggests that this effect occurs in only a minority (about 2%) of ageing men. However, there is a lot of research currently in progress to find out more about the effects of testosterone in older men and also whether the use of testosterone replacement therapy would have any benefits.
However, testosterone is only one of many factors that aid in adequate erections. Research is inconclusive regarding the role of testosterone replacement in the treatment of erectile dysfunction. In a review of studies that looked at the benefit of testosterone in men with erection difficulties, nearly half showed no improvement with testosterone treatment. Many times, other health problems play a role in erectile difficulties. These can include:

Transdermal preparations of testosterone utilize the fact that the skin readily absorbs steroid hormones. Initial transdermal preparations took the form of scrotal patches with testosterone loaded on to a membranous patch. Absorption from the scrotal skin was particularly good and physiological levels of testosterone with diurnal variation were reliably attained. The scrotal patches are now rarely used because they require regular shaving or clipping of scrotal hair and because they produce rather high levels of dihydrotestosterone compared to testosterone (Behre et al 1999). Subsequently, non-scrotal patches were developed but the absorptive capacity of non-scrotal skin is much lower, so these patches contain additional chemicals which enhance absorption. The non-scrotal skin patches produce physiological testosterone levels without supraphysiological dihydrotestosterone levels. Unfortunately, the patches produce a high rate of local skin reactions often leading to discontinuation (Parker and Armitage 1999). In the last few years, transdermal testosterone gel preparations have become available. These require daily application by patients and produce steady state physiological testosterone levels within a few days in most patients (Swerdloff et al 2000; Steidle et al 2003). The advantages compared with testosterone patches include invisibility, reduced skin irritation and the ability to adjust dosage, but concerns about transfer to women and children on close skin contact necessitate showering after application or coverage with clothes.
×