Oral/buccal (by mouth). The buccal dose comes in a patch that you place above your incisor (canine or "eyetooth"). The medication looks like a tablet but you should not chew or swallow it. The drug is released over 12 hours. This method has fewer harmful side effects on the liver than if the drug is swallowed, but it may cause headaches or cause irritation where you place it.

According to a review of all randomized controlled trials evaluating sildenafil by the American Urological Association (AUA) Consensus Panel on Erectile Dysfunction, 36% to 76% of patients receiving the drug were "able to achieve intercourse" during treatment. For tadalafil, four randomized controlled trials revealed that 11% to 47% of patients were "able to achieve intercourse." Similar efficacy has been observed with vardenafil, although studies are fewer.19 A meta-analysis published in 2013 clearly demonstrated increased efficacy over placebo for all PDE5 inhibitors.24 Head-to-head comparison suggested that tadalafil outperforms sildenafil on validated measures of erectile dysfunction, including the international index of erectile function and sexual encounter profile-2 and -3.


Factors that mediate contraction in the penis include noradrenaline, endothelin-1, neuropeptide Y, prostanoids, angiotensin II, and others not yet identified. Factors that mediate relaxation include acetylcholine, nitric oxide (NO), vasoactive intestinal polypeptide, pituitary adenylyl cyclase–activating peptide, calcitonin gene–related peptide, adrenomedullin, adenosine triphosphate, and adenosine prostanoids.

Patients with both ED and cardiovascular disease who receive treatment with an oral PDE5 inhibitor require education regarding what to do if anginal episodes develop while the drug is in their system. Such education includes stressing the importance of alerting emergency care providers to the presence of the drug so that nitrate treatment is avoided.
A team led by Dr. Joel Finkelstein at Massachusetts General Hospital investigated testosterone and estradiol levels in 400 healthy men, 20 to 50 years of age. To control hormone levels, the researchers first gave the participants injections of a drug that suppressed their normal testosterone and estradiol production. The men were randomly assigned to 5 groups that received different amounts (from 0 to 10 grams) of a topical 1% testosterone gel daily for 16 weeks. Half of the participants were also given a drug to block testosterone from being converted to estradiol.
Erectile dysfunction, also known as ED or impotence, is the inability to attain or maintain an erection of the penis adequate for the sexual satisfaction of both partners. It can be devastating to the self-esteem of a man and of his partner. As many as 30 million American men are afflicted on a continuing basis, and transient episodes affect nearly all adult males. But nearly all men who seek treatment find some measure of relief.
Miscellaneous: Sleep: (REM sleep) increases nocturnal testosterone levels.[138] Behavior: Dominance challenges can, in some cases, stimulate increased testosterone release in men.[139] Drugs: Natural or man-made antiandrogens including spearmint tea reduce testosterone levels.[140][141][142] Licorice can decrease the production of testosterone and this effect is greater in females.[143]
Cross-sectional studies conducted at the time of diagnosis of BPH have failed to show consistent differences in testosterone levels between patients and controls. A prospective study also failed to demonstrate a correlation between testosterone and the development of BPH (Gann et al 1995). Clinical trials have shown that testosterone treatment of hypogonadal men does cause growth of the prostate, but only to the size seen in normal men, and also causes a small increase in prostate specific antigen (PSA) within the normal range (Rhoden and Morgentaler 2005). Despite growth of the prostate a number of studies have failed to detect any adverse effects on symptoms of urinary obstruction or physiological measurements such as flow rates and residual volumes (Snyder et al 1999; Kenny et al 2000, 2001). Despite the lack of evidence linking symptoms of BPH to testosterone treatment, it remains important to monitor for any new or deteriorating problems when commencing patients on testosterone treatment, as the small growth of prostate tissue may adversely affect a certain subset of individuals.

Treatment involves addressing the underlying causes, lifestyle modifications, and addressing psychosocial issues.[1] In many cases, a trial of pharmacological therapy with a PDE5 inhibitor, such as sildenafil, can be attempted. In some cases, treatment can involve inserting prostaglandin pellets into the urethra, injecting smooth muscle relaxants and vasodilators into the penis, a penile prosthesis, a penis pump, or vascular reconstructive surgery.[1][2] It is the most common sexual problem in men.[3]
Erectile dysfunction (ED) is the inability to get an erection or to keep one that's firm enough or that lasts long enough for a man to have a satisfying sexual experience. Occasional bouts of ED aren't unusual. In fact, as many as one in five men deal with erectile dysfunction to some degree. Symptoms, of course, are rather obvious. And while age can be a risk factor, so can medication use, health conditions, lifestyle factors (like smoking), and other concerns. Treatment is available and may involve prescriptions, habit changes, or other options.
In many cases, diagnosing erectile dysfunction requires little more than a physical exam and a review of your symptoms. If your doctor suspects that an underlying health problem may be at play, however, he may request additional testing. Once you’ve determined the cause for your ED, you and your doctor can decide on a form of treatment – here are some of the options:
A common and important cause of ED is vasculogenic. Many men with ED have comorbid conditions such as hyperlipidemia, hypercholesterolemia, tobacco abuse, diabetes mellitus, or coronary artery disease (CAD). [6] The Princeton III Consensus recommends screening men who present with ED for cardiovascular risk factors; ED may be the earliest presentation of atherosclerosis and vascular disease. [7] 

The group's 2010 clinical practice guidelines make it clear that "the threshold testosterone level below which symptoms of androgen deficiency and adverse health outcomes occur and testosterone administration improves outcomes in the general population is not known." They also clearly advise against screening men in the general population to avoid "labeling and medicalization of otherwise healthy men for whom testing, treatment, and monitoring would represent a burden with unclear benefit."
Findings that improvements in serum glucose, serum insulin, insulin resistance or glycemic control, in men treated with testosterone are accompanied by reduced measures of central obesity, are in line with other studies showing a specific effect of testosterone in reducing central or visceral obesity (Rebuffe-Scrive et al 1991; Marin, Holmang et al 1992). Furthermore, studies that have shown neutral effects of testosterone on glucose metabolism have not measured (Corrales et al 2004), or shown neutral effects (Lee et al 2005) (Tripathy et al 1998; Bhasin et al 2005) on central obesity. Given the known association of visceral obesity with insulin resistance, it is possible that testosterone treatment of hypogonadal men acts to improve insulin resistance and diabetes through an effect in reducing central obesity. This effect can be explained by the action of testosterone in inhibiting lipoprotein lipase and thereby reducing triglyceride uptake into adipocytes (Sorva et al 1988), an action which seems to occur preferentially in visceral fat (Marin et al 1995; Marin et al 1996). Visceral fat is thought to be more responsive to hormonal changes due to a greater concentration of androgen receptors and increased vascularity compared with subcutaneous fat (Bjorntorp 1996). Further explanation of the links between hypogonadism and obesity is offered by the hypogonadal-obesity-adipocytokine cycle hypothesis (see Figure 1). In this model, increases in body fat lead to increases in aromatase levels, in addition to insulin resistance, adverse lipid profiles and increased leptin levels. Increased action of aromatase in metabolizing testosterone to estrogen, reduces testosterone levels which induces further accumulation of visceral fat. Higher leptin levels and possibly other factors, act at the pituitary to suppress gonadotrophin release and exacerbate hypogonadism (Cohen 1999; Kapoor et al 2005). Leptin has also been shown to reduce testosterone secretion from rodent testes in vitro (Tena-Sempere et al 1999). A full review of the relationship between testosterone, insulin resistance and diabetes can be found elsewhere (Kapoor et al 2005; Jones 2007).
Stress is your body responding to your environment. And it’s a good thing—in limited doses. When you get stressed out your body makes chemicals like adrenaline that make you stronger, faster, fitter, and even able to think more clearly. Most people call this reaction the “fight-or-flight” response, and it’s a life-saver in dangerous situations. In a very real sense, adrenaline makes you a part-time superhero. The problems happen when your body deals with constant stress.
Studies have demonstrated reduced testosterone levels in men with heart failure as well as other endocrine changes (Tappler and Katz 1979; Kontoleon et al 2003). Treatment of cardiac failure with chronic mechanical circulatory support normalizes many of these changes, including testosterone levels (Noirhomme et al 1999). More recently, two double-blind randomized controlled trials of testosterone treatment for men with low or low-normal serum testosterone levels and heart failure have shown improvements in exercise capacity and symptoms (Pugh et al 2004; Malkin et al 2006). The mechanism of these benefits is currently unclear, although a study of the acute effects of buccal testosterone given to men with chronic cardiac failure under invasive monitoring showed that testosterone increased cardiac index and reduced systemic vascular resistance (Pugh et al 2003). Testosterone may prove useful in the management of cardiac failure but further research is needed.
Early infancy androgen effects are the least understood. In the first weeks of life for male infants, testosterone levels rise. The levels remain in a pubertal range for a few months, but usually reach the barely detectable levels of childhood by 4–7 months of age.[15][16] The function of this rise in humans is unknown. It has been theorized that brain masculinization is occurring since no significant changes have been identified in other parts of the body.[17] The male brain is masculinized by the aromatization of testosterone into estrogen, which crosses the blood–brain barrier and enters the male brain, whereas female fetuses have α-fetoprotein, which binds the estrogen so that female brains are not affected.[18]
Erectile dysfunction is a common finding in the aging male. A prevalence of over 70% was found in men older than 70 in a recent cross-sectional study (Ponholzer et al 2005). Treatment with phosphodiesterase-5 (PDE-5) inhibitors is proven to be effective for the majority of men but some do not respond (Shabsigh and Anastasiadis 2003). The condition is multi-factorial, with contributions from emotional, vascular, neurological and pharmacological factors. The concept of erectile dysfunction as a vascular disease is particularly interesting in view of the evidence presented above, linking testosterone to atherosclerosis and describing its action as a vasodilator.

Diabetes is a well-recognized risk factor for ED. A systematic review and meta-analysis found that the prevalence of ED was 37.5% in type 1 diabetes, 66.3% in type 2 diabetes, and 52.5% in diabetes overall—a rate approximately 3.5 times higher than that in controls. [39]  The etiology of ED in diabetic men probably involves both vascular and neurogenic mechanisms. Evidence indicates that establishing good glycemic control can minimize this risk.
The participants were seen every 4 weeks. Blood was taken to measure hormone levels, and questionnaires were given to assess physical function, health status, vitality, and sexual function. Body fat and muscle measurements were also taken at the beginning and end of the 16 weeks. The study was funded in part by NIH’s National Institute on Aging (NIA) and National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK). Results appeared in the September 12, 2013, issue of the New England Journal of Medicine.

Do erectile dysfunction exercises help? Many people have erectile dysfunction (ED), but it is often possible to reverse this with exercises to strengthen muscles in the area. These include pelvic floor exercises. ED can often be due to lifestyle factors including obesity and low physical activity levels. Learn more about exercises for ED here. Read now


Transdermal preparations of testosterone utilize the fact that the skin readily absorbs steroid hormones. Initial transdermal preparations took the form of scrotal patches with testosterone loaded on to a membranous patch. Absorption from the scrotal skin was particularly good and physiological levels of testosterone with diurnal variation were reliably attained. The scrotal patches are now rarely used because they require regular shaving or clipping of scrotal hair and because they produce rather high levels of dihydrotestosterone compared to testosterone (Behre et al 1999). Subsequently, non-scrotal patches were developed but the absorptive capacity of non-scrotal skin is much lower, so these patches contain additional chemicals which enhance absorption. The non-scrotal skin patches produce physiological testosterone levels without supraphysiological dihydrotestosterone levels. Unfortunately, the patches produce a high rate of local skin reactions often leading to discontinuation (Parker and Armitage 1999). In the last few years, transdermal testosterone gel preparations have become available. These require daily application by patients and produce steady state physiological testosterone levels within a few days in most patients (Swerdloff et al 2000; Steidle et al 2003). The advantages compared with testosterone patches include invisibility, reduced skin irritation and the ability to adjust dosage, but concerns about transfer to women and children on close skin contact necessitate showering after application or coverage with clothes.
×