The medications are extremely effective, which is very good. And the medications are, for the most part, extremely well-tolerated. But there are, like with any medications, a potential downside. The one absolute downside to the use of any of these erection what we call PDE5 medications is if a patient is using a nitroglycerin medication. And nitroglycerins are used for heart disease and for angina, for the most part, although there are some recreational uses of nitrites. And that’s important because your blood vessels will dilate and your blood pressure will drop. And that is an absolute contraindication.


Oral/buccal (by mouth). The buccal dose comes in a patch that you place above your incisor (canine or "eyetooth"). The medication looks like a tablet but you should not chew or swallow it. The drug is released over 12 hours. This method has fewer harmful side effects on the liver than if the drug is swallowed, but it may cause headaches or cause irritation where you place it.
Trials of testosterone treatment in men with type 2 diabetes have also taken place. A recent randomized controlled crossover trial assessed the effects of intramuscular testosterone replacement to achieve levels within the physiological range, compared with placebo injections in 24 men with diabetes, hypogonadism and a mean age of 64 years (Kapoor et al 2006). Ten of these men were insulin treated. Testosterone treatment led to a significant reduction in glycated hemoglobin (HbA1C) and fasting glucose compared to placebo. Testosterone also produced a significant reduction in insulin resistance, measured by the homeostatic model assessment (HOMA), in the fourteen non-insulin treated patients. It is not possible to measure insulin resistance in patients treated with insulin but five out of ten of these patients had a reduction of insulin dose during the study. Other significant changes during testosterone treatment in this trial were reduced total cholesterol, waist circumference and waist-hip ratio. Similarly, a placebo-controlled but non-blinded trial in 24 men with visceral obesity, diabetes, hypogonadism and mean age 57 years found that three months of oral testosterone treatment led to significant reductions in HbA1C, fasting glucose, post-prandial glucose, weight, fat mass and waist-hip ratio (Boyanov et al 2003). In contrast, an uncontrolled study of 150 mg intramuscular testosterone given to 10 patients, average age 64 years, with diabetes and hypogonadism found no significant change in diabetes control, fasting glucose or insulin levels (Corrales et al 2004). Another uncontrolled study showed no beneficial effect of testosterone treatment on insulin resistance, measured by HOMA and ‘minimal model’ of area under acute insulin response curves, in 11 patients with type 2 diabetes aged between 33 and 73 years (Lee et al 2005). Body mass index was within the normal range in this population and there was no change in waist-hip ratio or weight during testosterone treatment. Baseline testosterone levels were in the low-normal range and patients received a relatively small dose of 100 mg intramuscular testosterone every three weeks. A good increase in testosterone levels during the trial is described but it is not stated at which time during the three week cycle the testosterone levels were tested, so the lack of response could reflect an insufficient overall testosterone dose in the trial period.
Testosterone is a sex hormone that plays important roles in the body. In men, it’s thought to regulate sex drive (libido), bone mass, fat distribution, muscle mass and strength, and the production of red blood cells and sperm. A small amount of circulating testosterone is converted to estradiol, a form of estrogen. As men age, they often make less testosterone, and so they produce less estradiol as well. Thus, changes often attributed to testosterone deficiency might be partly or entirely due to the accompanying decline in estradiol.
Sexual stimulation causes the release of neurotransmitters from cavernosal nerve endings and relaxation factors from endothelial cells lining the sinusoids. NOS produces NO from L-arginine, and this, in turn, produces other muscle-relaxing chemicals, such as cGMP and cyclic adenosine monophosphate (cAMP), which work via calcium channel and protein kinase mechanisms (see the image below). This results in the relaxation of smooth muscle in the arteries and arterioles that supply the erectile tissue, producing a dramatic increase in penile blood flow.
They also don't make clear how risky exposure to testosterone gel is for others—female partners, children, even pets. The gel is actually notorious for transferring to others. It can cause excess hair to grow on women's faces and arms, deepen their voices, interrupt menstruation, and make them anxious and irritable. In children, exposure to testosterone gels and creams can cause premature puberty and aggression. And in pets, it can cause aggressive behavior and enlargement of the genitalia.

The second theory is similar and is known as "evolutionary neuroandrogenic (ENA) theory of male aggression".[78][79] Testosterone and other androgens have evolved to masculinize a brain in order to be competitive even to the point of risking harm to the person and others. By doing so, individuals with masculinized brains as a result of pre-natal and adult life testosterone and androgens enhance their resource acquiring abilities in order to survive, attract and copulate with mates as much as possible.[78] The masculinization of the brain is not just mediated by testosterone levels at the adult stage, but also testosterone exposure in the womb as a fetus. Higher pre-natal testosterone indicated by a low digit ratio as well as adult testosterone levels increased risk of fouls or aggression among male players in a soccer game.[80] Studies have also found higher pre-natal testosterone or lower digit ratio to be correlated with higher aggression in males.[81][82][83][84][85]


Dr. Shiel received a Bachelor of Science degree with honors from the University of Notre Dame. There he was involved in research in radiation biology and received the Huisking Scholarship. After graduating from St. Louis University School of Medicine, he completed his Internal Medicine residency and Rheumatology fellowship at the University of California, Irvine. He is board-certified in Internal Medicine and Rheumatology.

Diabetes is an example of an endocrine disease that can cause a person to experience impotence. Diabetes affects the body’s ability to utilize the hormone insulin. One of the side effects associated with chronic diabetes is nerve damage. This affects penis sensations. Other complications associated with diabetes are impaired blood flow and hormone levels. Both of these factors can contribute to impotence.
×