In one study, 9.6% reported ‘occasional’ erectile dysfunction, 8.9% reported erectile dysfunction occurring ‘often’, and 18.6% reported erectile dysfunction occurring ‘all the time’. Of these, only 11.6% had received treatment.In another study, only 14.1% of men reported that they had received treatment, despite experiencing erectile dysfunction for longer than 12 months.
Longitudinal studies in male aging studies have shown that serum testosterone levels decline with age (Harman et al 2001; Feldman et al 2002). Total testosterone levels fall at an average of 1.6% per year whilst free and bioavailable levels fall by 2%–3% per year. The reduction in free and bioavailable testosterone levels is larger because aging is also associated with increases in SHBG levels (Feldman et al 2002). Cross-sectional data supports these trends but has usually shown smaller reductions in testosterone levels with aging (Feldman et al 2002). This is likely to reflect strict entry criteria to cross-sectional studies so that young healthy men are compared to older healthy men. During the course of longitudinal studies some men may develop pathologies which accentuate decreases in testosterone levels.
Testosterone is an androgen hormone produced by the adrenal cortex, the testes (in men), and the ovaries (in women). It is often considered the primary male sex hormone. Testosterone stimulates the development of male secondary sex characteristics (like body hair and muscle growth) and is essential in the production of sperm. In women, testosterone plays a role in egg development and ovulation.
Exercise and lifestyle modifications may improve erectile function. Weight loss may help by decreasing inflammation, increasing testosterone, and improving self-esteem. Patients should be educated to increase activity, reduce weight, and stop smoking, as these efforts can improve or restore erectile function in men without comorbidities. Precise glycemic control in diabetic patients and pharmacologic treatment of hypertension may be important in preventing or reducing sexual dysfunction. [49]
A number of research groups have tried to further define the relationship of testosterone and body composition by artificial alteration of testosterone levels in eugonadal populations. Induction of a hypogonadal state in healthy men (Mauras et al 1998) or men with prostate cancer (Smith et al 2001) using a gonadotrophin-releasing-hormone (GnRH) analogue was shown to produce increases in fat mass and decreased fat free mass. Another experimental approach in healthy men featured suppression of endogenous testosterone production with a GnRH analogue, followed by treatment with different doses of weekly intramuscular testosterone esters for 20 weeks. Initially the experiments involved men aged 18–35 years (Bhasin et al 2001) but subsequently the study was repeated with a similar protocol in men aged 60–75 years (Bhasin et al 2005). The different doses given were shown to produce a range of serum concentrations from subphysiological to supraphysiological (Bhasin et al 2001). A given testosterone dose produced higher serum concentrations of testosterone in the older age group (Bhasin et al 2005). Subphysiological dosing of testosterone produced a gain in fat mass and loss of fat free mass during the study. There were sequential decreases in fat mass and increases in fat free mass with each increase of testosterone dose. These changes in body composition were seen in physiological and supraphysiological treatment doses. The trend was similar in younger versus older men but the gain of fat mass at the lowest testosterone dose was less prominent in older patients (Bhasin et al 2001; Bhasin et al 2005). With regard to muscle function, the investigators showed dose dependent increases in leg strength and power with testosterone treatment in young and older men but there was no improvement in fatigability (Storer et al 2003; Bhasin et al 2005).
More can be learned from a large, randomized, placebo-controlled trial of finasteride treatment in 18,800 men aged 55 or more. Finasteride is a 5α-reductase inhibitor which acts to prevent the metabolism of testosterone to dihydrotestosterone (DHT) – the most active androgen in the prostate. The trial showed a greater overall incidence of prostate cancer in the control group, but men treated with finasteride were more likely to have high grade tumors (Thompson et al 2003), suggesting that reduced androgen exposure of the prostate may delay the presentation of prostate cancer and/or promote advanced disease in some other way.
Can apple cider vinegar treat erectile dysfunction? Apple cider vinegar is thought to have many health benefits, but can it help treat erectile dysfunction (ED)? ED can result from cardiovascular problems, diabetes, and other factors. Apple cider vinegar may help improve symptoms of conditions related to ED. Find out how it may help, and how to use it safely. Read now
But if a man with sleep apnea is diagnosed with low testosterone alone, taking the supplemental hormone can worsen sleep apnea. That's why it's crucial for men with low testosterone to get a thorough workup by an endocrinologist so underlying conditions that can cause low testosterone, such as sleep apnea or pituitary-gland tumors, don't go undiagnosed, Dr. Goodman says.
"The hope," explained Dr. Swerdloff in a telephone interview, "is this will provide some clarity as to whether testosterone replacement therapy will benefit men in this older age group who clearly have abnormal testosterone and have some symptoms." He added, "We don't know whether it will be beneficial at all the endpoints we are studying, or be beneficial to some and not others. We don't know if the benefits occur at different blood levels that are attained in the individuals."
In the hepatic 17-ketosteroid pathway of testosterone metabolism, testosterone is converted in the liver by 5α-reductase and 5β-reductase into 5α-DHT and the inactive 5β-DHT, respectively.[1][147] Then, 5α-DHT and 5β-DHT are converted by 3α-HSD into 3α-androstanediol and 3α-etiocholanediol, respectively.[1][147] Subsequently, 3α-androstanediol and 3α-etiocholanediol are converted by 17β-HSD into androsterone and etiocholanolone, which is followed by their conjugation and excretion.[1][147] 3β-Androstanediol and 3β-etiocholanediol can also be formed in this pathway when 5α-DHT and 5β-DHT are acted upon by 3β-HSD instead of 3α-HSD, respectively, and they can then be transformed into epiandrosterone and epietiocholanolone, respectively.[149][150] A small portion of approximately 3% of testosterone is reversibly converted in the liver into androstenedione by 17β-HSD.[148]
Over a 2-year period, a third of the men randomized to a weight loss program demonstrated resolution of erectile dysfunction.10 A Mediterranean diet and nutritional counseling reported increased erectile quality.18 Little evidence supports that increased physical activity alone improves erectile quality; however, the strong association between physical activity and lower BMI is well described, and therefore recommended for men with erectile dysfunction and without a contraindication to physical activity.
An international consensus document was recently published and provides guidance on the diagnosis, treatment and monitoring of late-onset hypogonadism (LOH) in men. The diagnosis of LOH requires biochemical and clinical components. Controversy in defining the clinical syndrome continues due to the high prevalence of hypogonadal symptoms in the aging male population and the non-specific nature of these symptoms. Further controversy surrounds setting a lower limit of normal testosterone, the limitations of the commonly available total testosterone result in assessing some patients and the unavailability of reliable measures of bioavailable or free testosterone for general clinical use. As with any clinical intervention testosterone treatment should be judged on a balance of risk versus benefit. The traditional benefits of testosterone on sexual function, mood, strength and quality of life remain the primary goals of treatment but possible beneficial effects on other parameters such as bone density, obesity, insulin resistance and angina are emerging and will be reviewed. Potential concerns regarding the effects of testosterone on prostate disease, aggression and polycythaemia will also be addressed. The options available for treatment have increased in recent years with the availability of a number of testosterone preparations which can reliably produce physiological serum concentrations.
Low testosterone levels can cause mood disturbances, increased body fat, loss of muscle tone, inadequate erections and poor sexual performance, osteoporosis, difficulty with concentration, memory loss and sleep difficulties. Current research suggests that this effect occurs in only a minority (about 2%) of ageing men. However, there is a lot of research currently in progress to find out more about the effects of testosterone in older men and also whether the use of testosterone replacement therapy would have any benefits.
For obvious reasons, ED can be a sensitive subject, one that until relatively recently men were more likely to try to hide than to deal with. Fortunately, a deeper understanding of the variety of causes of erectile dysfunction has led to medications, therapies, and other treatments that can be more individualized and more likely to be effective—and more open discussion about addressing the concern.

In a recent study of male workers, men with low testosterone levels had an increased chance of severe erectile dysfunction (Kratzik et al 2005), although such a link had not been found previously (Rhoden et al 2002). Certainly erectile dysfunction is considered part of the clinical syndrome of hypogonadism, and questions regarding erectile dysfunction form part of the clinical assessment of patients with hypogonadism (Morley et al 2000; Moore et al 2004).
×