Overall, it seems that both estrogen and testosterone are important for normal bone growth and maintenance. Deficiency or failure of action of the sex hormones is associated with osteoporosis and minimal trauma fractures. Estrogen in males is produced via metabolism of testosterone by aromatase and it is therefore important that androgens used for the treatment of hypogonadism be amenable to the action of aromatase to yield maximal positive effects on bone. There is data showing that testosterone treatment increases bone mineral density in aging males but that these benefits are confined to hypogonadal men. The magnitude of this improvement is greater in the spine than in the hip and further studies are warranted to confirm or refute any differential effects of testosterone at these important sites. Improvements seen in randomized controlled trials to date may underestimate true positive effects due to relatively short duration and/or baseline characteristics of the patients involved. There is no data as yet to confirm that the improvement in bone density with testosterone treatment reduces fractures in men and this is an important area for future study.
In the U.S., where millions watch the Super Bowl simply to see the clever and costly commercials, and where pharmaceuticals with potentially deadly side effects are pushed on the public at every turn, it's probably not surprising that ads for "Low T" are now splayed across billboards in Florida, with its huge number of older residents, or that a chain of "Low T Centers" has sprung up in Texas and around the heartland.
In 1927, the University of Chicago's Professor of Physiologic Chemistry, Fred C. Koch, established easy access to a large source of bovine testicles — the Chicago stockyards — and recruited students willing to endure the tedious work of extracting their isolates. In that year, Koch and his student, Lemuel McGee, derived 20 mg of a substance from a supply of 40 pounds of bovine testicles that, when administered to castrated roosters, pigs and rats, remasculinized them.[176] The group of Ernst Laqueur at the University of Amsterdam purified testosterone from bovine testicles in a similar manner in 1934, but isolation of the hormone from animal tissues in amounts permitting serious study in humans was not feasible until three European pharmaceutical giants—Schering (Berlin, Germany), Organon (Oss, Netherlands) and Ciba (Basel, Switzerland)—began full-scale steroid research and development programs in the 1930s.
If a trial of oral ED therapy and withdrawal of offending medications prove to be ineffective in restoring erectile function, it is appropriate for most primary care practitioners to consider referral to a specialist for additional evaluation and discussion of alternative treatment options. These include intracavernous injection therapy, vacuum constriction devices, intraurethral therapy, and possible surgery.

The largest amounts of testosterone (>95%) are produced by the testes in men,[2] while the adrenal glands account for most of the remainder. Testosterone is also synthesized in far smaller total quantities in women by the adrenal glands, thecal cells of the ovaries, and, during pregnancy, by the placenta.[122] In the testes, testosterone is produced by the Leydig cells.[123] The male generative glands also contain Sertoli cells, which require testosterone for spermatogenesis. Like most hormones, testosterone is supplied to target tissues in the blood where much of it is transported bound to a specific plasma protein, sex hormone-binding globulin (SHBG).
The amount of testosterone synthesized is regulated by the hypothalamic–pituitary–testicular axis (see figure to the right).[125] When testosterone levels are low, gonadotropin-releasing hormone (GnRH) is released by the hypothalamus, which in turn stimulates the pituitary gland to release FSH and LH. These latter two hormones stimulate the testis to synthesize testosterone. Finally, increasing levels of testosterone through a negative feedback loop act on the hypothalamus and pituitary to inhibit the release of GnRH and FSH/LH, respectively.
Think of erectile dysfunction as your body’s “check engine light.” The blood vessels in the penis are smaller than other parts of the body, so underlying conditions like blocked arteries, heart disease, or high blood pressure usually show up as ED before something more serious like a heart attack or stroke. ED is your body’s way of saying, “Something is wrong.” And the list of things that cause erectile dysfunction can include:
But if a man with sleep apnea is diagnosed with low testosterone alone, taking the supplemental hormone can worsen sleep apnea. That's why it's crucial for men with low testosterone to get a thorough workup by an endocrinologist so underlying conditions that can cause low testosterone, such as sleep apnea or pituitary-gland tumors, don't go undiagnosed, Dr. Goodman says.

The information shared on our websites is information developed solely from internal experts on the subject matter, including medical advisory boards, who have developed guidelines for our patient content. This material does not constitute medical advice. It is intended for informational purposes only. No one associated with the National Kidney Foundation will answer medical questions via e-mail. Please consult a physician for specific treatment recommendations.
Early infancy androgen effects are the least understood. In the first weeks of life for male infants, testosterone levels rise. The levels remain in a pubertal range for a few months, but usually reach the barely detectable levels of childhood by 4–7 months of age.[15][16] The function of this rise in humans is unknown. It has been theorized that brain masculinization is occurring since no significant changes have been identified in other parts of the body.[17] The male brain is masculinized by the aromatization of testosterone into estrogen, which crosses the blood–brain barrier and enters the male brain, whereas female fetuses have α-fetoprotein, which binds the estrogen so that female brains are not affected.[18]
Studies have demonstrated reduced testosterone levels in men with heart failure as well as other endocrine changes (Tappler and Katz 1979; Kontoleon et al 2003). Treatment of cardiac failure with chronic mechanical circulatory support normalizes many of these changes, including testosterone levels (Noirhomme et al 1999). More recently, two double-blind randomized controlled trials of testosterone treatment for men with low or low-normal serum testosterone levels and heart failure have shown improvements in exercise capacity and symptoms (Pugh et al 2004; Malkin et al 2006). The mechanism of these benefits is currently unclear, although a study of the acute effects of buccal testosterone given to men with chronic cardiac failure under invasive monitoring showed that testosterone increased cardiac index and reduced systemic vascular resistance (Pugh et al 2003). Testosterone may prove useful in the management of cardiac failure but further research is needed.
In a randomized double-blind, parallel, placebo-controlled trial, sildenafil plus testosterone was not superior to sildenafil plus placebo in improving erectile function in men with ED and low testosterone levels. [19] The objective of the study was to determine whether the addition of testosterone to sildenafil therapy improves erectile response in men with ED and low testosterone levels.
Having learned a great deal more about erectile dysfunction including its risk factors and causes, you should be equipped to assess your own erectile function. If you have experienced erectile issues or you have some of the risk factors mentioned above, it may be worth making a trip to your doctor’s office. If you choose to seek help, give your doctor as much information as you can about your symptoms including their frequency and severity as well as the onset. With your doctor’s help, you can determine the best course of treatment to restore sexual function.
For some men who are aging, the idea of testosterone replacement therapy seems like an enticing option. Effects such as increased vigour, increased muscle strength, enhanced memory, sharpened concentration, a boost in libido and increased energy levels can make this drug seem like the miracle anti-aging therapy. However, it is unclear whether or not this therapy can offer any health benefits to men who simply have a normal age-related decline in testosterone. Few large studies have examined the effects of this therapy in men who have a healthy testosterone level and the few smaller studies that have been conducted reveal conflicting results.

The sex hormone testosterone is far more than just the stuff of the alpha male's swagger. Though it plays a more significant role in the life of the biological male, it is actually present in both sexes to some degree. Despite popular perceptions that testosterone primarily controls aggression and sex drive—although it does play a role in both of those things—research has shown that individual levels of testosterone are also correlated with our language skills and cognitive abilities. Testosterone occurs in the body naturally, but can be administered as a medication, too: its most common uses are in the treatment of hypogonadism and breast cancer, as well as in hormone therapy for transgender men.


But if a man with sleep apnea is diagnosed with low testosterone alone, taking the supplemental hormone can worsen sleep apnea. That's why it's crucial for men with low testosterone to get a thorough workup by an endocrinologist so underlying conditions that can cause low testosterone, such as sleep apnea or pituitary-gland tumors, don't go undiagnosed, Dr. Goodman says.
Male hypogonadism becomes more common with increasing age and is currently an under-treated condition. The diagnosis of hypogonadism in the aging male requires a combination of symptoms and low serum testosterone levels. The currently available testosterone preparations can produce consistent physiological testosterone levels and provide for patient preference. 
×