Many clinical studies have looked at the effect of testosterone treatment on body composition in hypogonadal men or men with borderline low testosterone levels. Some of these studies specifically examine these changes in older men (Tenover 1992; Morley et al 1993; Urban et al 1995; Sih et al 1997; Snyder et al 1999; Kenny et al 2001; Ferrando et al 2002; Steidle et al 2003; Page et al 2005). The data from studies, on patients from all age groups, are consistent in showing an increase in fat free mass and decrease in fat mass or visceral adiposity with testosterone treatment. A recent meta-analysis of 16 randomized controlled trials of testosterone treatment effects on body composition confirms this pattern (Isidori et al 2005). There have been less consistent results with regard to the effects of testosterone treatment of muscle strength. Some studies have shown an increase in muscle strength (Ferrando et al 2002; Page et al 2005) with testosterone whilst others have not (Snyder et al 1999). Within the same trial some muscle group strengths may improve whilst others do not (Ly et al 2001). It is likely that the differences are partly due to the methodological variations in assessing strength, but it also possible that testosterone has different effects on the various muscle groups. The meta-analysis found trends toward significant improvements in dominant knee and hand grip strength only (Isidori et al 2005).
Recently, a panel with cooperation from international andrology and urology societies, published specific recommendations with regard to the diagnosis of Late-onset Hypogonadism (Nieschlag et al 2005). These are summarized in the following text. It is advised that at least two serum testosterone measurements, taken before 11 am on different mornings, are necessary to confirm the diagnosis. The second sample should also include measurement of gonadotrophin and prolactin levels, which may indicate the need for further investigations for pituitary disease. Patients with serum total testosterone consistently below 8 nmol/l invariably demonstrate the clinical syndrome of hypogonadism and are likely to benefit from treatment. Patients with serum total testosterone in the range 8–12 nmol/l often have symptoms attributable to hypogonadism and it may be decided to offer either a clinical trial of testosterone treatment or to make further efforts to define serum bioavailable or free testosterone and then reconsider treatment. Patients with serum total testosterone persistently above 12 nmol/l do not have hypogonadism and symptoms are likely to be due to other disease states or ageing per se so testosterone treatment is not indicated.
In the hepatic 17-ketosteroid pathway of testosterone metabolism, testosterone is converted in the liver by 5α-reductase and 5β-reductase into 5α-DHT and the inactive 5β-DHT, respectively.[1][147] Then, 5α-DHT and 5β-DHT are converted by 3α-HSD into 3α-androstanediol and 3α-etiocholanediol, respectively.[1][147] Subsequently, 3α-androstanediol and 3α-etiocholanediol are converted by 17β-HSD into androsterone and etiocholanolone, which is followed by their conjugation and excretion.[1][147] 3β-Androstanediol and 3β-etiocholanediol can also be formed in this pathway when 5α-DHT and 5β-DHT are acted upon by 3β-HSD instead of 3α-HSD, respectively, and they can then be transformed into epiandrosterone and epietiocholanolone, respectively.[149][150] A small portion of approximately 3% of testosterone is reversibly converted in the liver into androstenedione by 17β-HSD.[148]
Erectile dysfunction (ED) affects 50% of men older than 40 years, [4] exerting substantial effects on quality of life. [5] This common problem is complex and involves multiple pathways. Penile erections are produced by an integration of physiologic processes involving the central nervous, peripheral nervous, hormonal, and vascular systems. Any abnormality in these systems, whether from medication or disease, has a significant impact on the ability to develop and sustain an erection, ejaculate, and experience orgasm.
The other interesting thing about the study: men’s testosterone levels were lowest in March (at the end of winter) and highest in August (at the end of summer). Sunlight affects your vitamin D production, so you have seasonal dips and peaks. Get a blood test to check your levels, and if you’re low, take a high-quality vitamin D3 supplement. If you’re going to take D3, take vitamin K2 and vitamin A with it. The three work in sync, so you want them all to be balanced. Here are my dosage recommendations.

There is a polymorphic CAG repeat sequence in the androgen receptor gene, which codes for a variable number of glutamine amino acids in the part of the receptor affecting gene transcription. A receptor with a short CAG sequence produces greater activity when androgens attach, and men with shorter CAG polymorphisms exhibit androgenic traits, such as preserved bone density (Zitzmann et al 2001) and prostate growth during testosterone treatment (Zitzmann et al 2003). Indirect evidence of the importance of androgens in the development of prostate cancer is provided by case control study findings of a shorter, more active CAG repeat sequence in the androgen receptor gene of patients with prostate cancer compared with controls (Hsing et al 2000, 2002).


It is essential to discuss erectile dysfunction with your doctor, so any serious underlying causes can be excluded and treatment options can be discussed. Many men are embarrassed discussing this issue with their doctor, or even their partner. Open communication with your doctor, and in your relationship, is important for effectively managing this common problem.
The changes in average serum testosterone levels with aging mean that the proportion of men fulfilling a biochemically defined diagnosis of hypogonadism increases with aging. Twenty percent of men aged over 60 have total testosterone levels below the normal range and the figure rises to 50% in those aged over 80. The figures concerning free testosterone are even higher as would be expected in view of the concurrent decrease in SHBG levels (Harman et al 2001).

Mood disturbance and dysthymia are part of the clinical syndrome of hypogonadism. Epidemiological studies have found a positive association between testosterone levels and mood, and depressed aging males have lower testosterone levels than controls (Barrett-Connor, Von Muhlen et al 1999). Furthermore, induction of a hypogonadal state during treatment of men for prostate cancer leads to an increase in depression scores (Almeida et al 2004). Trials of testosterone treatment effects on mood have varied in outcome. Data on the effects on men with depression are conflicting (Seidman et al 2001; Pope et al 2003) but there is evidence that testosterone treatment of older hypogonadal men does result in improvements in mood (Wang et al 1996) and that this may occur through changes in regional brain perfusion (Azad et al 2003).
One study examined the role of testosterone supplementation in hypogonadal men with ED. These men were considered nonresponders to sildenafil, and their erections were monitored by assessing nocturnal penile tumescence (NPT). After these men were given testosterone transdermally for 6 months, the number of NPTs increased, as did the maximum rigidity with sildenafil. [18] This study suggests that a certain level of testosterone may be necessary for PDE5 inhibitors to function properly.
Research has even found possible links to frequent ejaculation and a lower risk of prostate cancer. In one study of 32,000 men published in 2016 in the journal European Urology, for example, men who ejaculated at least 21 times per month while in their 20s were less likely to be diagnosed with prostate cancer than those who ejaculated four to seven times per month. And men who ejaculated more often in their 40s were 22 percent less likely to get a prostate cancer diagnosis.
Rest and recovery is just as important as exercise, if not more so. Every time you do an intense workout, give yourself a minimum of 2 days to recuperate afterward, if not more. And don’t mix exercise with sleep hacking. If you’re exercising, get at least 8 hours of sleep every night. Your body uses it to rebuild, and you can throw your hormones out of whack if you don’t rest up properly. Here’s a more in-depth guide to Bulletproof weight training, complete with sample workouts.
The mechanism of age related decreases in serum testosterone levels has also been the subject of investigation. Metabolic clearance declines with age but this effect is less pronounced than a reduction in testosterone production, so the overall effect is to reduce serum testosterone levels. Gonadotrophin levels rise during aging (Feldman et al 2002) and testicular secretory responses to recombinant human chorionic gonadotrophin (hCG) are reduced (Mulligan et al 1999, 2001). This implies that the reduced production may be caused by primary testicular failure but in fact these changes are not adequate to fully explain the fall in testosterone levels. There are changes in the lutenising hormone (LH) production which consist of decreased LH pulse frequency and amplitude, (Veldhuis et al 1992; Pincus et al 1997) although pituitary production of LH in response to pharmacological stimulation with exogenous GnRH analogues is preserved (Mulligan et al 1999). It therefore seems likely that there are changes in endogenous production of GnRH which underlie the changes in LH secretion and have a role in the age related decline in testosterone. Thus the decreases in testosterone levels with aging seem to reflect changes at all levels of the hypothalamic-pituitary-testicular axis. With advancing age there is also a reduction in androgen receptor concentration in some target tissues and this may contribute to the clinical syndrome of LOH (Ono et al 1988; Gallon et al 1989).
In order to discuss the biochemical diagnosis of hypogonadism it is necessary to outline the usual carriage of testosterone in the blood. Total serum testosterone consists of free testosterone (2%–3%), testosterone bound to sex hormone binding globulin (SHBG) (45%) and testosterone bound to other proteins (mainly albumin −50%) (Dunn et al 1981). Testosterone binds only loosely to albumin and so this testosterone as well as free testosterone is available to tissues and is termed bioavailable testosterone. Testosterone bound to SHBG is tightly bound and is biologically inactive. Bioavailable and free testosterone are known to correlate better than total testosterone with clinical sequelae of androgenization such as bone mineral density and muscle strength (Khosla et al 1998; Roy et al 2002). There is diurnal variation in serum testosterone levels with peak levels seen in the morning following sleep, which can be maintained into the seventh decade (Diver et al 2003). Samples should always be taken in the morning before 11 am to allow for standardization.
A simple blood test can determine testosterone levels. There is a wide range of “normal” or healthy level of testosterone circulating in the bloodstream. The normal range of testosterone for men is between 250 and 1100 ng/dL for adult males, and between 8 and 60 ng/dL for adult females, according to the Mayo Clinic. Ask your doctor to test your testosterone levels if you have concerns about low testosterone (low T).
Some self-administered measures may be useful in the primary care setting to screen for and evaluate the degree of ED.12 The most commonly used instrument is the International Index of Erectile Function, a 15-item questionnaire that has been validated in many populations and is considered the gold standard to evaluate patients for ED.13 The Sexual Health Inventory for Men is a short-form, 5-item questionnaire developed to monitor treatment progress.12 It is important to recognize that short-form questionnaire does not evaluate specific areas of the sexual cycle, such as sexual desire, ejaculation, and orgasm; however, it may be useful in discussing ED with patients and evaluating treatment results over time.

A number of research groups have tried to further define the relationship of testosterone and body composition by artificial alteration of testosterone levels in eugonadal populations. Induction of a hypogonadal state in healthy men (Mauras et al 1998) or men with prostate cancer (Smith et al 2001) using a gonadotrophin-releasing-hormone (GnRH) analogue was shown to produce increases in fat mass and decreased fat free mass. Another experimental approach in healthy men featured suppression of endogenous testosterone production with a GnRH analogue, followed by treatment with different doses of weekly intramuscular testosterone esters for 20 weeks. Initially the experiments involved men aged 18–35 years (Bhasin et al 2001) but subsequently the study was repeated with a similar protocol in men aged 60–75 years (Bhasin et al 2005). The different doses given were shown to produce a range of serum concentrations from subphysiological to supraphysiological (Bhasin et al 2001). A given testosterone dose produced higher serum concentrations of testosterone in the older age group (Bhasin et al 2005). Subphysiological dosing of testosterone produced a gain in fat mass and loss of fat free mass during the study. There were sequential decreases in fat mass and increases in fat free mass with each increase of testosterone dose. These changes in body composition were seen in physiological and supraphysiological treatment doses. The trend was similar in younger versus older men but the gain of fat mass at the lowest testosterone dose was less prominent in older patients (Bhasin et al 2001; Bhasin et al 2005). With regard to muscle function, the investigators showed dose dependent increases in leg strength and power with testosterone treatment in young and older men but there was no improvement in fatigability (Storer et al 2003; Bhasin et al 2005).
show that total testosterone levels increase after exercising, especially after resistance training. Low testosterone levels can affect your sex drive and your mood. The good news is that exercise improves mood and stimulates brain chemicals to help you feel happier and more confident. Exercise also boosts energy and endurance, and helps you to sleep better. Fitness experts recommend 30 minutes of exercise every day.
Oral/buccal (by mouth). The buccal dose comes in a patch that you place above your incisor (canine or "eyetooth"). The medication looks like a tablet but you should not chew or swallow it. The drug is released over 12 hours. This method has fewer harmful side effects on the liver than if the drug is swallowed, but it may cause headaches or cause irritation where you place it.
Pellets. Your doctor will place the testosterone pellets under the skin of your upper hip or buttocks. Your doctor will give a shot of local anesthesia to numb your skin, then make a small cut and place the pellets inside the fatty tissues underneath your skin. This medication dissolves slowly and is released over about 3-6 months, depending on the number of pellets. 
Capogrosso, P., Colicchia, M., Ventimiglia, E., Castagna, G., Clementi, M. C., Suardi, N., ... Salonia, A. (2013, July). One patient out of four with newly diagnosed erectile dysfunction is a young man — worrisome picture from the everyday clinical practice. The journal of sexual medicine. 10(7), 1833–1841. Retrieved from https://onlinelibrary.wiley.com/doi/full/10.1111/jsm.12179
However, testosterone is only one of many factors that aid in adequate erections. Research is inconclusive regarding the role of testosterone replacement in the treatment of erectile dysfunction. In a review of studies that looked at the benefit of testosterone in men with erection difficulties, nearly half showed no improvement with testosterone treatment. Many times, other health problems play a role in erectile difficulties. These can include:

Testosterone is included in the World Health Organization's list of essential medicines, which are the most important medications needed in a basic health system.[172] It is available as a generic medication.[10] The price depends on the form of testosterone used.[173] It can be administered as a cream or transdermal patch that is applied to the skin, by injection into a muscle, as a tablet that is placed in the cheek, or by ingestion.[10]
Intramuscular testosterone injections were first used around fifty years ago. Commercially available preparations contain testosterone esters in an oily vehicle. Esterification is designed to retard the release of testosterone from the depot site into the blood because the half life of unmodified testosterone would be very short. For many years intramuscular preparations were the most commonly used testosterone therapy and this is still the case in some centers. Pain can occur at injection sites, but the injections are generally well tolerated and free of major side effects. Until recently, the available intramuscular injections were designed for use at a frequency of between weekly and once every four weeks. These preparations are the cheapest mode of testosterone treatment available, but often cause supraphysiological testosterone levels in the days immediately following injection and/or low trough levels prior to the next injection during which time the symptoms of hypogonadism may return (Nieschlag et al 1976). More recently, a commercial preparation of testosterone undecanoate for intramuscular injection has become available. This has a much longer half life and produces testosterone levels in the physiological range throughout each treatment cycle (Schubert et al 2004). The usual dose frequency is once every three months. This is much more convenient for patients but does not allow prompt cessation of treatment if a contraindication to testosterone develops. The most common example of this would be prostate cancer and it has therefore been suggested that shorter acting testosterone preparations should preferably used for treating older patients (Nieschlag et al 2005). Similar considerations apply to the use of subcutaneous implants which take the form of cylindrical pellets injected under the skin of the abdominal wall and steadily release testosterone to provide physiological testosterone levels for up to six months. Problems also include pellet extrusion and infection (Handelsman et al 1997).
The Cancer of the Prostate Strategic Urologic Research Endeavor (CaPSURE) study, designed to determine whether an individual man’s sexual outcomes after most common treatments for early-stage prostate cancer could be accurately predicted on the basis of baseline characteristics and treatment plans, found that 2 years after treatment, 177 (35%) of 511 men who underwent prostatectomy reported the ability to attain functional erections suitable for intercourse. [45]
The PDE5 inhibitors sildenafil (Viagra), vardenafil (Levitra) and tadalafil (Cialis) are prescription drugs which are taken orally.[22]:20–21 Additionally, a cream combining alprostadil with the permeation enhancer DDAIP has been approved in Canada as a first line treatment for erectile dysfunction.[25] Penile injections, on the other hand, can involve one of the following medications: papaverine, phentolamine, and prostaglandin E1.[22]:25
Some of these signs and symptoms can be caused by various underlying factors, including medication side effects, obstructive sleep apnea, thyroid problems, diabetes and depression. It's also possible that these conditions may be the cause of low testosterone levels, and treatment of these problems may cause testosterone levels to rise. A blood test is the only way to diagnose a low testosterone level.
Regular exercise for about 20 to 30 minutes a day may act as a libido enhancer and certainly will improve your overall health. "Exercising improves blood flow to all areas of your body and that includes the pelvic region where the blood vessels needed for sexual functioning are located," says Feloney. Some other ways that regular exercise can improve your sexual performance include building up your stamina, lowering your blood pressure, relieving stress, and helping you look and feel better.
When stimulated by the nerves, the spongy tissue arranges itself in such a way that more blood can be stored in the penis. The veins running through the outer sheath of the penis then compress which stops the blood from leaving the penis. As the blood is stopped from flowing out, the penis fills with blood and stretches within the outer casing, giving an erection.
The mechanism of age related decreases in serum testosterone levels has also been the subject of investigation. Metabolic clearance declines with age but this effect is less pronounced than a reduction in testosterone production, so the overall effect is to reduce serum testosterone levels. Gonadotrophin levels rise during aging (Feldman et al 2002) and testicular secretory responses to recombinant human chorionic gonadotrophin (hCG) are reduced (Mulligan et al 1999, 2001). This implies that the reduced production may be caused by primary testicular failure but in fact these changes are not adequate to fully explain the fall in testosterone levels. There are changes in the lutenising hormone (LH) production which consist of decreased LH pulse frequency and amplitude, (Veldhuis et al 1992; Pincus et al 1997) although pituitary production of LH in response to pharmacological stimulation with exogenous GnRH analogues is preserved (Mulligan et al 1999). It therefore seems likely that there are changes in endogenous production of GnRH which underlie the changes in LH secretion and have a role in the age related decline in testosterone. Thus the decreases in testosterone levels with aging seem to reflect changes at all levels of the hypothalamic-pituitary-testicular axis. With advancing age there is also a reduction in androgen receptor concentration in some target tissues and this may contribute to the clinical syndrome of LOH (Ono et al 1988; Gallon et al 1989).

ED can also occur among younger men. A 2013 study found that one in four men seeking their first treatment for ED were under the age of 40. The researchers found a stronger correlation between smoking and illicit drug use and ED in men under 40 than among older men. That suggests that lifestyle choices may be a main contributing factor for ED in younger men.


Penile erection is managed by two mechanisms: the reflex erection, which is achieved by directly touching the penile shaft, and the psychogenic erection, which is achieved by erotic or emotional stimuli. The former uses the peripheral nerves and the lower parts of the spinal cord, whereas the latter uses the limbic system of the brain. In both cases, an intact neural system is required for a successful and complete erection. Stimulation of the penile shaft by the nervous system leads to the secretion of nitric oxide (NO), which causes the relaxation of smooth muscles of corpora cavernosa (the main erectile tissue of penis), and subsequently penile erection. Additionally, adequate levels of testosterone (produced by the testes) and an intact pituitary gland are required for the development of a healthy erectile system. As can be understood from the mechanisms of a normal erection, impotence may develop due to hormonal deficiency, disorders of the neural system, lack of adequate penile blood supply or psychological problems.[18] Spinal cord injury causes sexual dysfunction including ED. Restriction of blood flow can arise from impaired endothelial function due to the usual causes associated with coronary artery disease, but can also be caused by prolonged exposure to bright light.
×