Testosterone is a steroid from the androstane class containing a keto and hydroxyl groups at the three and seventeen positions respectively. It is biosynthesized in several steps from cholesterol and is converted in the liver to inactive metabolites.[5] It exerts its action through binding to and activation of the androgen receptor.[5] In humans and most other vertebrates, testosterone is secreted primarily by the testicles of males and, to a lesser extent, the ovaries of females. On average, in adult males, levels of testosterone are about 7 to 8 times as great as in adult females.[6] As the metabolism of testosterone in males is greater, the daily production is about 20 times greater in men.[7][8] Females are also more sensitive to the hormone.[9]
Factors that mediate contraction in the penis include noradrenaline, endothelin-1, neuropeptide Y, prostanoids, angiotensin II, and others not yet identified. Factors that mediate relaxation include acetylcholine, nitric oxide (NO), vasoactive intestinal polypeptide, pituitary adenylyl cyclase–activating peptide, calcitonin gene–related peptide, adrenomedullin, adenosine triphosphate, and adenosine prostanoids.
The laboratory results should be discussed with the patient and, if possible, with his sexual partner. This educational process allows a review of the basic aspects of the anatomy and physiology of the sexual response and an explanation of the possible etiology and associated risk factors (eg, smoking and the use of various medications). Treatment options and their benefits and risks should be discussed. This type of dialogue allows the patient and physician to cooperate in developing an optimal management strategy.
Many clinical studies have looked at the effect of testosterone treatment on body composition in hypogonadal men or men with borderline low testosterone levels. Some of these studies specifically examine these changes in older men (Tenover 1992; Morley et al 1993; Urban et al 1995; Sih et al 1997; Snyder et al 1999; Kenny et al 2001; Ferrando et al 2002; Steidle et al 2003; Page et al 2005). The data from studies, on patients from all age groups, are consistent in showing an increase in fat free mass and decrease in fat mass or visceral adiposity with testosterone treatment. A recent meta-analysis of 16 randomized controlled trials of testosterone treatment effects on body composition confirms this pattern (Isidori et al 2005). There have been less consistent results with regard to the effects of testosterone treatment of muscle strength. Some studies have shown an increase in muscle strength (Ferrando et al 2002; Page et al 2005) with testosterone whilst others have not (Snyder et al 1999). Within the same trial some muscle group strengths may improve whilst others do not (Ly et al 2001). It is likely that the differences are partly due to the methodological variations in assessing strength, but it also possible that testosterone has different effects on the various muscle groups. The meta-analysis found trends toward significant improvements in dominant knee and hand grip strength only (Isidori et al 2005).
Another study compared the response of surgically and medically castrated rabbits to vardenafil with that of control rabbits. [22] Castrated rabbits did not respond to vardenafil, whereas noncastrated rabbits did respond appropriately. This result suggests that a minimum amount of testosterone is necessary for PDE5 inhibitors to produce an erection.

Men with medical conditions that may cause a sustained erection, such as sickle cell anemia, leukemia, or multiple myeloma, or a man who has an abnormally-shaped penis, may not benefit from these medications. Also, men with liver diseases or a disease of the retina, such as macular degeneration or retinitis pigmentosa, may not be able to take these medications, or may need to take the lowest dosage.

In the hepatic 17-ketosteroid pathway of testosterone metabolism, testosterone is converted in the liver by 5α-reductase and 5β-reductase into 5α-DHT and the inactive 5β-DHT, respectively.[1][147] Then, 5α-DHT and 5β-DHT are converted by 3α-HSD into 3α-androstanediol and 3α-etiocholanediol, respectively.[1][147] Subsequently, 3α-androstanediol and 3α-etiocholanediol are converted by 17β-HSD into androsterone and etiocholanolone, which is followed by their conjugation and excretion.[1][147] 3β-Androstanediol and 3β-etiocholanediol can also be formed in this pathway when 5α-DHT and 5β-DHT are acted upon by 3β-HSD instead of 3α-HSD, respectively, and they can then be transformed into epiandrosterone and epietiocholanolone, respectively.[149][150] A small portion of approximately 3% of testosterone is reversibly converted in the liver into androstenedione by 17β-HSD.[148]

In the last few years, a lot of men and women have switched over to a pellet that goes under your skin. This is probably the best way to take testosterone now. The pellet is life-changing for both men and women (the dose for women is much lower than it is for men). Women, you won’t get bulky and grow a beard when you take testosterone to achieve normal levels, but you will probably lean out a little without losing your curves, and your energy and sex drive will be amazing. Female bodybuilders who experience weird scary side effects are taking anabolic steroids.
So what is this Big T, anyway? Derived from cholesterol, testosterone is a steroid hormone—called an androgen—that causes the development and maintenance of masculine characteristics. It's mainly secreted by the testicles in males, although the adrenal cortex and ovaries in females also secrete testosterone—though only about one-tenth the amount as in healthy males.
In a recent study of male workers, men with low testosterone levels had an increased chance of severe erectile dysfunction (Kratzik et al 2005), although such a link had not been found previously (Rhoden et al 2002). Certainly erectile dysfunction is considered part of the clinical syndrome of hypogonadism, and questions regarding erectile dysfunction form part of the clinical assessment of patients with hypogonadism (Morley et al 2000; Moore et al 2004).
It appears that testosterone has NOS-independent pathways as well. In one study, castrated rats were implanted with testosterone pellets and then divided into a group that received an NOS inhibitor (L-nitro-L-arginine methyl ester [L-NAME]) and a control group that received no enzyme. [24] The castrated rats that were given testosterone pellets and L-NAME still had partial erections, a result suggesting the presence of a pathway independent of NOS activity.
When I first started TRT, my physician prescribed a cream that you rub into your skin. The cream version of TRT is not too convenient, because if someone touches you while you have the cream on, the testosterone can rub off on him/her. This can be really bad around kids or pregnant women. If you’re sleeping next to someone, the cream can get on the sheets and transfer over that way, too. The cream can be annoying, but it works. There’s also a gel version called AndroGel; I skipped it because it doesn’t absorb as well as the cream does.