Alprostadil (also known as prostaglandin E1 [PGE1]) is the prominent known smooth-muscle dilator of the corpus cavernosum. Its mechanism of action is believed to be the promotion of intracellular accumulation of cyclic adenosine monophosphate, thereby causing decreased intracellular accumulation of calcium and resulting smooth muscle relaxation. Alprostadil can be delivered to the erectile tissue either via an intraurethral suppository that is massaged and then absorbed across the corpus spongiosum of the urethra to the corpora cavernosa, or directly injected into the corpora cavernosa. When administered urethrally, doses are substantially higher than when directly injected (typical dosing is 500 mcg to 1 mg intraurethral compared with 2.5 mcg to 20 mcg intracavernosal).


Qaseem, A., Snow, V., Denberg, T. D., Casey, D. E., Forciea, M. A., Owens, D. K., & Shekelle, P. (2009). Hormonal testing and pharmacologic treatment of erectile dysfunction: A clinical practice guideline from the American College of Physicians. Annals of internal medicine, 151(9), 639-649. Retrieved from http://annals.org/aim/article/745155/hormonal-testing-pharmacologic-treatment-erectile-dysfunction-clinical-practice-guideline-from
Overall, it seems that both estrogen and testosterone are important for normal bone growth and maintenance. Deficiency or failure of action of the sex hormones is associated with osteoporosis and minimal trauma fractures. Estrogen in males is produced via metabolism of testosterone by aromatase and it is therefore important that androgens used for the treatment of hypogonadism be amenable to the action of aromatase to yield maximal positive effects on bone. There is data showing that testosterone treatment increases bone mineral density in aging males but that these benefits are confined to hypogonadal men. The magnitude of this improvement is greater in the spine than in the hip and further studies are warranted to confirm or refute any differential effects of testosterone at these important sites. Improvements seen in randomized controlled trials to date may underestimate true positive effects due to relatively short duration and/or baseline characteristics of the patients involved. There is no data as yet to confirm that the improvement in bone density with testosterone treatment reduces fractures in men and this is an important area for future study.
Do erectile dysfunction exercises help? Many people have erectile dysfunction (ED), but it is often possible to reverse this with exercises to strengthen muscles in the area. These include pelvic floor exercises. ED can often be due to lifestyle factors including obesity and low physical activity levels. Learn more about exercises for ED here. Read now
Both testosterone and 5α-DHT are metabolized mainly in the liver.[1][147] Approximately 50% of testosterone is metabolized via conjugation into testosterone glucuronide and to a lesser extent testosterone sulfate by glucuronosyltransferases and sulfotransferases, respectively.[1] An additional 40% of testosterone is metabolized in equal proportions into the 17-ketosteroids androsterone and etiocholanolone via the combined actions of 5α- and 5β-reductases, 3α-hydroxysteroid dehydrogenase, and 17β-HSD, in that order.[1][147][148] Androsterone and etiocholanolone are then glucuronidated and to a lesser extent sulfated similarly to testosterone.[1][147] The conjugates of testosterone and its hepatic metabolites are released from the liver into circulation and excreted in the urine and bile.[1][147][148] Only a small fraction (2%) of testosterone is excreted unchanged in the urine.[147]
A simple blood test can determine testosterone levels. There is a wide range of “normal” or healthy level of testosterone circulating in the bloodstream. The normal range of testosterone for men is between 250 and 1100 ng/dL for adult males, and between 8 and 60 ng/dL for adult females, according to the Mayo Clinic. Ask your doctor to test your testosterone levels if you have concerns about low testosterone (low T).

Intramuscular testosterone injections were first used around fifty years ago. Commercially available preparations contain testosterone esters in an oily vehicle. Esterification is designed to retard the release of testosterone from the depot site into the blood because the half life of unmodified testosterone would be very short. For many years intramuscular preparations were the most commonly used testosterone therapy and this is still the case in some centers. Pain can occur at injection sites, but the injections are generally well tolerated and free of major side effects. Until recently, the available intramuscular injections were designed for use at a frequency of between weekly and once every four weeks. These preparations are the cheapest mode of testosterone treatment available, but often cause supraphysiological testosterone levels in the days immediately following injection and/or low trough levels prior to the next injection during which time the symptoms of hypogonadism may return (Nieschlag et al 1976). More recently, a commercial preparation of testosterone undecanoate for intramuscular injection has become available. This has a much longer half life and produces testosterone levels in the physiological range throughout each treatment cycle (Schubert et al 2004). The usual dose frequency is once every three months. This is much more convenient for patients but does not allow prompt cessation of treatment if a contraindication to testosterone develops. The most common example of this would be prostate cancer and it has therefore been suggested that shorter acting testosterone preparations should preferably used for treating older patients (Nieschlag et al 2005). Similar considerations apply to the use of subcutaneous implants which take the form of cylindrical pellets injected under the skin of the abdominal wall and steadily release testosterone to provide physiological testosterone levels for up to six months. Problems also include pellet extrusion and infection (Handelsman et al 1997).


Richard J. Wassersug, PhD, an adjunct professor of urology at the University of British Columbia, described his personal experience with androgen deprivation therapy (ADT). "If you are on ADT," he said, "and you see those Low T ads, what are you supposed to make of it? This produces a cognitive dissonance." He called the ads "hurtful" for suggesting that low testosterone makes a man less of a man.


Many experts believe that atrophy, a partial or complete wasting away of tissue, and fibrosis, the growth of excess tissue, of the smooth muscle tissue in the body of the penis (cavernous smooth muscle) triggers problems with being able to maintain a firm erection. Poor ability to maintain an erection is often an early symptom of erectile dysfunction. Although the condition is called venous leak, the real problem is not with the veins but malfunction of the smooth muscle that surrounds the veins. The end result is difficulty with maintain a firm erection (losing an erection too quickly) that is now believe to be an early manifestation of atherosclerosis and vascular disease.

Erectile dysfunction is known to be associated with general health status, thus, lifestyle modification improves erectile function and decreases the rate of decline of function with aging. One year after discontinuation of smoking, patients were found to have a 25% improvement in erectile quality.16 In addition, multivariate analysis found obesity is associated with erectile dysfunction with an approximately 50% increase in ED in obese men as compared with normal weight men.17
Examples of common neurologic conditions that can lead to ED include cerebral vascular accident, multiple sclerosis, Parkinson’s disease, and spinal cord injury. Microvascular disease associated with diabetes is thought to compound the endothelial and neural injuries associated with this disease. Pelvic surgery may disrupt both neural and vascular pathways, resulting in ED.
There are many effective treatments for impotence. The most popular is a class of drugs called phosphodiesterase type 5 (PDE5) inhibitors. These include sildenafil (Viagra), vardenafil (Levitra), tadalafil (Cialis) and avanafil (STENDRA). These drugs are taken in pill form. They work in most men. But they are less effective in men with neurological causes of impotence.
Another effect that can limit treatment is polycythemia, which occurs due to various stimulatory effects of testosterone on erythropoiesis (Zitzmann and Nieschlag 2004). Polycythemia is known to produce increased rates of cerebral ischemia and there have been reports of stroke during testosterone induced polycythaemia (Krauss et al 1991). It is necessary to monitor hematocrit during testosterone treatment, and hematocrit greater than 50% should prompt either a reduction of dose if testosterone levels are high or high-normal, or cessation of treatment if levels are low-normal. On the other hand, late onset hypogonadism frequently results in anemia which will then normalize during physiological testosterone replacement.

early 15c., "physical weakness," also "poverty," from Middle French impotence "weakness," from Latin impotentia "lack of control or power," from impotentem (nominative impotens); see impotent. In reference to a want of (male) sexual potency, from c.1500. The figurative senses of the word in Latin were "violence, fury, unbridled passion." Related: Impotency.


The use of anabolic steroids (manufactured androgenic hormones) shuts down the release of luteinising hormone and follicle stimulating hormone secretion from the pituitary gland, which in turn decreases the amount of testosterone and sperm produced within the testes. In men, prolonged exposure to anabolic steroids results in infertility, a decreased sex drive, shrinking of the testes and breast development. Liver damage may result from its prolonged attempts to detoxify the anabolic steroids. Behavioural changes (such as increased irritability) may also be observed. Undesirable reactions also occur in women who take anabolic steroids regularly, as a high concentration of testosterone, either natural or manufactured, can cause masculinisation (virilisation) of women.
Several treatments were promoted in the pre-PGE1, pre-prostaglandin era, including yohimbine, trazodone, testosterone, and various herbal remedies. None of these is currently recommended under the updated American Urological Association Guidelines for the Treatment of Erectile Dysfunction.15 Testosterone supplementation is only recommended for men with low testosterone levels.
If you have symptoms of ED, it’s important to check with your doctor before trying any treatments on your own. This is because ED can be a sign of other health problems. For instance, heart disease or high cholesterol could cause ED symptoms. With a diagnosis, your doctor could recommend a number of steps that would likely improve both your heart health and your ED. These steps include lowering your cholesterol, reducing your weight, or taking medications to unclog your blood vessels.
Intramuscular testosterone injections were first used around fifty years ago. Commercially available preparations contain testosterone esters in an oily vehicle. Esterification is designed to retard the release of testosterone from the depot site into the blood because the half life of unmodified testosterone would be very short. For many years intramuscular preparations were the most commonly used testosterone therapy and this is still the case in some centers. Pain can occur at injection sites, but the injections are generally well tolerated and free of major side effects. Until recently, the available intramuscular injections were designed for use at a frequency of between weekly and once every four weeks. These preparations are the cheapest mode of testosterone treatment available, but often cause supraphysiological testosterone levels in the days immediately following injection and/or low trough levels prior to the next injection during which time the symptoms of hypogonadism may return (Nieschlag et al 1976). More recently, a commercial preparation of testosterone undecanoate for intramuscular injection has become available. This has a much longer half life and produces testosterone levels in the physiological range throughout each treatment cycle (Schubert et al 2004). The usual dose frequency is once every three months. This is much more convenient for patients but does not allow prompt cessation of treatment if a contraindication to testosterone develops. The most common example of this would be prostate cancer and it has therefore been suggested that shorter acting testosterone preparations should preferably used for treating older patients (Nieschlag et al 2005). Similar considerations apply to the use of subcutaneous implants which take the form of cylindrical pellets injected under the skin of the abdominal wall and steadily release testosterone to provide physiological testosterone levels for up to six months. Problems also include pellet extrusion and infection (Handelsman et al 1997).
Chronic stress dumps adrenaline in your system multiple times a day. And that can lead to high blood pressure, heart disease, obesity, and diabetes. Chronic stress is like red-lining your car all day long. When you drive 100 mph all the time, something is going to break down. A high-stress environment can actually change the way your brain sends messages to your body. Dumping too much adrenaline into your bloodstream can affect blood flow and severely limit your ability to achieve and maintain an erection.

Factors that mediate contraction in the penis include noradrenaline, endothelin-1, neuropeptide Y, prostanoids, angiotensin II, and others not yet identified. Factors that mediate relaxation include acetylcholine, nitric oxide (NO), vasoactive intestinal polypeptide, pituitary adenylyl cyclase–activating peptide, calcitonin gene–related peptide, adrenomedullin, adenosine triphosphate, and adenosine prostanoids.


Additionally, the physiologic processes involving erections begin at the genetic level. Certain genes become activated at critical times to produce proteins vital to sustaining this pathway. Some researchers have focused on identifying particular genes that place men at risk for ED. At present, these studies are limited to animal models, and little success has been reported to date. [4] Nevertheless, this research has given rise to many new treatment targets and a better understanding of the entire process.


4. National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK). Erectile dysfunction (updated Nov 2015). https://www.niddk.nih.gov/health-information/health-topics/urologic-disease/erectile-dysfunction/Pages/facts.aspx (accessed Nov 2016). myDr myDr provides comprehensive Australian health and medical information, images and tools covering symptoms, diseases, tests, medicines and treatments, and nutrition and fitness.Related ArticlesImpotence causesFind out the physical and psychological causes of impotence, also called erectile dysfunction or ED.Erectile dysfunction: visiting your doctorFind out what questions a doctor may ask when discussing erectile dysfunction (ED, or impotence8 Surprising causes of erectile dysfunctionOccasional erectile dysfunction is not uncommon, but if it's persistent, erectile dysfunction caAdvertisement
Dr. Adriane Fugh-Berman, associate professor of pharmacology and director of the industry watchdog group PharmedOut.org at Georgetown University School of Medicine, calls this kind of direct-to-consumer pharmaceutical advertising "evil." She likened the efforts to sell TRT to earlier campaigns to push hormone replacement therapy for post-menopausal women. "They stole the playbook," she said. "This hormone is being thrown around like sugar water."
×