Toggle navigationNewsConditionsConditionsADHDAllergic rhinitisAlzheimer's diseaseAnxietyArthritisAsthmaAutismBowel cancerBreast cancerCancerChesty coughsChickenpoxChlamydiaCholesterolCoeliac diseaseCommon coldConstipationCOPDDepressionDiabetesDiverticulitisEpilepsyFatty liverFibromyalgiaGenital herpesGORD (reflux)GoutHaemorrhoidsHair lossHeart attackHepatitisHiatus herniaHigh blood pressureHIV and AIDSImpotenceMenopauseMigraineNeuropathic painOsteoporosisPainPeptic ulcersPneumoniaProstate cancerScabiesSchizophreniaSciaticaShinglesSinusitisSkin cancerStrokeThyroid gland disordersUrticaria (hives)Vaginal thrushVasectomyVertigoVulval problemsWhooping coughMedicinesMedicinesAugmentinAvilChlorsigDaklinzaDuromineEndepEndoneHarvoniLevlenLyricaMersyndolMetrogylPanadeine FortePanefcortelonePrimolutRestavitSovaldiStemetilViagraZentelFind a MedicineMedicines CentreSymptomsSymptomsBack painChildhood rashesCommon coldDepressionFeverFibromyalgiaHeart attackHeel painHerpesLeg acheLeg crampsSciaticaShinglesStrokeVaginal thrushVertigoMore symptomsLifestyleHealthy LifestyleAddictionsAlcoholCholesterolExerciseHealthy eatingHealthy WeightHeart healthImmunisationSleepSmokingStress Health Centres Nutrition & WeightSports & FitnessTools Medical Dictionary Medical Dictionary
Before assessing the evidence of testosterone’s action in the aging male it is important to note certain methodological considerations which are common to the interpretation of any clinical trial of testosterone replacement. Many interventional trials of the effects of testosterone on human health and disease have been conducted. There is considerable heterogenicity in terms of study design and these differences have a potential to significantly affect the results seen in various studies. Gonadal status at baseline and the testosterone level produced by testosterone treatment in the study are of particular importance because the effects of altering testosterone from subphysiological to physiological levels may be different from those of altering physiological levels to supraphysiological. Another important factor is the length of treatment. Randomised controlled trials of testosterone have ranged from one to thirty-six months in duration (Isidori et al 2005) although some uncontrolled studies have lasted up to 42 months. Many effects of testosterone are thought to fully develop in the first few months of treatment but effects on bone, for example, have been shown to continue over two years or more (Snyder et al 2000; Wang, Cunningham et al 2004).
Dr. Fugh-Berman said these campaigns encourage men to "ask your doctor" whether their weight gain, falling asleep after dinner, reduced energy, and diminished sex drive are due to "Low T." At the same time, the companies are working other angles to influence doctors' prescribing practices through industry-sponsored continuing medical education (CME) courses and sponsored medical journal articles. They have even created a respectable-sounding journal called The Aging Male. Fugh-Berman said all these channels "are being used to persuade doctors they should be treating this."
Epidemiological data has associated low testosterone levels with atherogenic lipid parameters, including lower HDL cholesterol (Lichtenstein et al 1987; Haffner et al 1993; Van Pottelbergh et al 2003) and higher total cholesterol (Haffner et al 1993; Van Pottelbergh et al 2003), LDL cholesterol (Haffner et al 1993) and triglyceride levels (Lichtenstein et al 1987; Haffner et al 1993). Furthermore, these relationships are independent of other factors such as age, obesity and glucose levels (Haffner et al 1993; Van Pottelbergh et al 2003). Interventional trails of testosterone replacement have shown that treatment causes a decrease in total cholesterol. A recent meta-analysis of 17 randomized controlled trials confirmed this and found that the magnitude of changes was larger in trials of patients with lower baseline testosterone levels (Isidori et al 2005). The same meta-analysis found no significant overall change in LDL or HDL cholesterol levels but in trials with baseline testosterone levels greater than 10 nmol/l, there was a small reduction in HDL cholesterol with testosterone treatment.
Cross-sectional studies conducted at the time of diagnosis of BPH have failed to show consistent differences in testosterone levels between patients and controls. A prospective study also failed to demonstrate a correlation between testosterone and the development of BPH (Gann et al 1995). Clinical trials have shown that testosterone treatment of hypogonadal men does cause growth of the prostate, but only to the size seen in normal men, and also causes a small increase in prostate specific antigen (PSA) within the normal range (Rhoden and Morgentaler 2005). Despite growth of the prostate a number of studies have failed to detect any adverse effects on symptoms of urinary obstruction or physiological measurements such as flow rates and residual volumes (Snyder et al 1999; Kenny et al 2000, 2001). Despite the lack of evidence linking symptoms of BPH to testosterone treatment, it remains important to monitor for any new or deteriorating problems when commencing patients on testosterone treatment, as the small growth of prostate tissue may adversely affect a certain subset of individuals.
Overall, it seems that both estrogen and testosterone are important for normal bone growth and maintenance. Deficiency or failure of action of the sex hormones is associated with osteoporosis and minimal trauma fractures. Estrogen in males is produced via metabolism of testosterone by aromatase and it is therefore important that androgens used for the treatment of hypogonadism be amenable to the action of aromatase to yield maximal positive effects on bone. There is data showing that testosterone treatment increases bone mineral density in aging males but that these benefits are confined to hypogonadal men. The magnitude of this improvement is greater in the spine than in the hip and further studies are warranted to confirm or refute any differential effects of testosterone at these important sites. Improvements seen in randomized controlled trials to date may underestimate true positive effects due to relatively short duration and/or baseline characteristics of the patients involved. There is no data as yet to confirm that the improvement in bone density with testosterone treatment reduces fractures in men and this is an important area for future study.
Epidemiological studies have also assessed links between serum testosterone and non-coronary atherosclerosis. A study of over 1000 people aged 55 years and over found an inverse correlation between serum total and bioavailable testosterone and the amount of aortic atherosclerosis in men, as assessed by radiological methods (Hak et al 2002). Increased intima-media thickness (IMT) is an early sign of atherosclerosis and has also been shown to predict cardiovascular mortality (Murakami et al 2005). Cross-sectional studies have found that testosterone levels are negatively correlated with carotid IMT in independently living men aged 74–93 years (van den Beld et al 2003), diabetic men (Fukui et al 2003) and young obese men (De Pergola et al 2003). A 4-year follow up study of the latter population showed that free testosterone was also inversely correlated with the rate of increase of IMT (Muller et al 2004).
You’ve probably heard of Viagra, but it’s not the only pill for ED. This class of drugs also includes Cialis, Levitra,  Staxyn, and Stendra. All work by improving blood flow to the penis during arousal. They're generally taken 30-60 minutes before sexual activity and should not be used more than once a day. Cialis can be taken up to 36 hours before sexual activity and also comes in a lower, daily dose. Staxyn dissolves in the mouth. All require an OK from your doctor first for safety.

^ Jump up to: a b Lazaridis I, Charalampopoulos I, Alexaki VI, Avlonitis N, Pediaditakis I, Efstathopoulos P, Calogeropoulou T, Castanas E, Gravanis A (2011). "Neurosteroid dehydroepiandrosterone interacts with nerve growth factor (NGF) receptors, preventing neuronal apoptosis". PLoS Biol. 9 (4): e1001051. doi:10.1371/journal.pbio.1001051. PMC 3082517. PMID 21541365.

Regular exercise for about 20 to 30 minutes a day may act as a libido enhancer and certainly will improve your overall health. "Exercising improves blood flow to all areas of your body and that includes the pelvic region where the blood vessels needed for sexual functioning are located," says Feloney. Some other ways that regular exercise can improve your sexual performance include building up your stamina, lowering your blood pressure, relieving stress, and helping you look and feel better.
The PDE5 inhibitors sildenafil (Viagra), vardenafil (Levitra) and tadalafil (Cialis) are prescription drugs which are taken orally.[22]:20–21 Additionally, a cream combining alprostadil with the permeation enhancer DDAIP has been approved in Canada as a first line treatment for erectile dysfunction.[25] Penile injections, on the other hand, can involve one of the following medications: papaverine, phentolamine, and prostaglandin E1.[22]:25
Causes of impotence are many and include heart disease, high cholesterol, high blood pressure, obesity, metabolic syndrome, Parkinson's disease, Peyronie's disease, substance abuse, sleep disorders, BPH treatments, relationship problems, blood vessel diseases (such as peripheral vascular disease and others), systemic disease, hormonal imbalance, and medications (such as blood pressure and heart medications).

Testosterone belongs to a class of male hormones called androgens, which are sometimes called steroids or anabolic steroids. In men, testosterone is produced mainly in the testes, with a small amount made in the adrenal glands. The brain's hypothalamus and pituitary gland control testosterone production. The hypothalamus instructs the pituitary gland on how much testosterone to produce, and the pituitary gland passes the message on to the testes. These communications happen through chemicals and hormones in the bloodstream.
In one study, 9.6% reported ‘occasional’ erectile dysfunction, 8.9% reported erectile dysfunction occurring ‘often’, and 18.6% reported erectile dysfunction occurring ‘all the time’. Of these, only 11.6% had received treatment.In another study, only 14.1% of men reported that they had received treatment, despite experiencing erectile dysfunction for longer than 12 months.
Of particularly concern are antihypertensive medications for CVD (eg, digoxin, disopyramide [Norpace], gemfibrozil [Lopid]), anxiety, depression (eg, lithium, monoamine oxidase inhibitors, selective serotonin reuptake inhibitors, serotonin-norepinephrine reuptake inhibitors, tricyclic antidepressants), or psychosis (eg, chlorpromazine, haloperidol, pimozide [Orap], thioridazine, thiothixene). Antihypertensive drugs, such as diuretics (eg, spironolactone, thiazides) and beta blockers, may be associated with ED. Discontinuation or switching to alternative drugs, such as angiotensin-converting enzyme inhibitors or calcium channel blockers (eg, diltiazem, nifedipine, amlodipine), may reduce ED. The newer angiotensin II receptor antagonists may be less problematic with respect to ED, but long-term data is needed to evaluate this.

The largest amounts of testosterone (>95%) are produced by the testes in men,[2] while the adrenal glands account for most of the remainder. Testosterone is also synthesized in far smaller total quantities in women by the adrenal glands, thecal cells of the ovaries, and, during pregnancy, by the placenta.[122] In the testes, testosterone is produced by the Leydig cells.[123] The male generative glands also contain Sertoli cells, which require testosterone for spermatogenesis. Like most hormones, testosterone is supplied to target tissues in the blood where much of it is transported bound to a specific plasma protein, sex hormone-binding globulin (SHBG).
It is common for a healthy older man to still want sex and be able to have sex within appropriate limitations. Understanding what is normal in older age is important to avoid frustration and concern. Older men and their partners often value being able to continue sexual activity and there is no age where the man is ‘too old’ to think about getting help with his erection or other sexual problems.
When many people think of someone with a high level of testosterone, they may picture a man loaded with strength, sexual prowess, and machismo. But while high-T has been correlated with all those things, it’s also been correlated with aggression, sexual misconduct, and violence. One of testosterone’s most common uses—as a performance-enhancing steroid—illustrates both sides of the hormone. Injecting steroids can be a quick way for athletes to dramatically improve performance, but the side effects can also be extreme, and can include excessive body hair growth, sexual dysfunction, and the hard-to-corral anger known as “roid rage.”
It doesn’t get more natural than getting a good night’s sleep. Research published in the Journal of the American Medical Association showed that lack of sleep can greatly reduce a healthy young man’s testosterone levels. That effect is clear after only one week of reduced sleep. Testosterone levels were particularly low between 2 and 10 p.m. on sleep-restricted days. Study participants also reported a decreased sense of wellbeing as their blood testosterone levels dropped.
Penile erection is managed by two mechanisms: the reflex erection, which is achieved by directly touching the penile shaft, and the psychogenic erection, which is achieved by erotic or emotional stimuli. The former uses the peripheral nerves and the lower parts of the spinal cord, whereas the latter uses the limbic system of the brain. In both cases, an intact neural system is required for a successful and complete erection. Stimulation of the penile shaft by the nervous system leads to the secretion of nitric oxide (NO), which causes the relaxation of smooth muscles of corpora cavernosa (the main erectile tissue of penis), and subsequently penile erection. Additionally, adequate levels of testosterone (produced by the testes) and an intact pituitary gland are required for the development of a healthy erectile system. As can be understood from the mechanisms of a normal erection, impotence may develop due to hormonal deficiency, disorders of the neural system, lack of adequate penile blood supply or psychological problems.[18] Spinal cord injury causes sexual dysfunction including ED. Restriction of blood flow can arise from impaired endothelial function due to the usual causes associated with coronary artery disease, but can also be caused by prolonged exposure to bright light.
Intramuscular testosterone injections were first used around fifty years ago. Commercially available preparations contain testosterone esters in an oily vehicle. Esterification is designed to retard the release of testosterone from the depot site into the blood because the half life of unmodified testosterone would be very short. For many years intramuscular preparations were the most commonly used testosterone therapy and this is still the case in some centers. Pain can occur at injection sites, but the injections are generally well tolerated and free of major side effects. Until recently, the available intramuscular injections were designed for use at a frequency of between weekly and once every four weeks. These preparations are the cheapest mode of testosterone treatment available, but often cause supraphysiological testosterone levels in the days immediately following injection and/or low trough levels prior to the next injection during which time the symptoms of hypogonadism may return (Nieschlag et al 1976). More recently, a commercial preparation of testosterone undecanoate for intramuscular injection has become available. This has a much longer half life and produces testosterone levels in the physiological range throughout each treatment cycle (Schubert et al 2004). The usual dose frequency is once every three months. This is much more convenient for patients but does not allow prompt cessation of treatment if a contraindication to testosterone develops. The most common example of this would be prostate cancer and it has therefore been suggested that shorter acting testosterone preparations should preferably used for treating older patients (Nieschlag et al 2005). Similar considerations apply to the use of subcutaneous implants which take the form of cylindrical pellets injected under the skin of the abdominal wall and steadily release testosterone to provide physiological testosterone levels for up to six months. Problems also include pellet extrusion and infection (Handelsman et al 1997).
Testosterone replacement therapy may improve energy, mood, and bone density, increase muscle mass and weight, and heighten sexual interest in older men who may have deficient levels of testosterone. Testosterone supplementation is not recommended for men who have normal testosterone levels for their age group due to the risk of prostate enlargement and other side effects. Testosterone replacement therapy is available as a cream or gel, topical solution, skin patch, injectable form and pellet form placed under the skin.
medicines called alpha-blockers such as Hytrin (terazosin
HCl), Flomax (tamsulosin HCl), Cardura (doxazosin
mesylate), Minipress (prazosin HCl), Uroxatral (alfuzosin HCl),
 Jalyn (dutasteride and tamsulosin HCl), or Rapaflo (silodosin).
Alpha-blockers are sometimes prescribed for prostate
problems or high blood pressure. In some patients, the use
of Sildenafil with alpha-blockers can lead to a drop in blood pressure or to fainting

Conflicting results have been obtained concerning the importance of testosterone in maintaining cardiovascular health.[29][30] Nevertheless, maintaining normal testosterone levels in elderly men has been shown to improve many parameters that are thought to reduce cardiovascular disease risk, such as increased lean body mass, decreased visceral fat mass, decreased total cholesterol, and glycemic control.[31]
Obesity and metabolic syndrome can cause changes in blood pressure, body composition, and cholesterol which may lead to ED. Other conditions that may contribute to erectile dysfunction include Parkinson’s, multiple sclerosis, Peyronie’s disease, sleep disorders, alcoholism, and drug abuse. Taking certain medications can also increase your risk for ED.

In the last few years, a lot of men and women have switched over to a pellet that goes under your skin. This is probably the best way to take testosterone now. The pellet is life-changing for both men and women (the dose for women is much lower than it is for men). Women, you won’t get bulky and grow a beard when you take testosterone to achieve normal levels, but you will probably lean out a little without losing your curves, and your energy and sex drive will be amazing. Female bodybuilders who experience weird scary side effects are taking anabolic steroids.
Sugar is to testosterone what kryptonite is to Superman. Eliminating sugar is probably the single most powerful way to increase your performance, in part because sugar absolutely devastates your testosterone levels (but all carbs do not, especially under heavy training.) In one study of 74 men, a 75g dose of sugar – about the equivalent of a bottle of soda – decreased serum testosterone by 25% in under an hour, and levels stayed low for at least 2 hours [7]. On top of that, 15% of the men who started with normal testosterone dipped into the hypogonadal range after they ate sugar – that’s the range in which doctors diagnose men’s testes and women’s ovaries as failing. When you do eat carbs, stick to Bulletproof ones like sweet potatoes and squash. My recommendations for types of carbs and how often to eat them are here.

In the short term, alcohol relaxes muscles in the penis, letting blood to flow in (which is a good thing). However, alcohol also prevents other blood vessels from closing and trapping all the extra blood. Erections depend on trapping increased blood flow in the erectile tissue of the penis. If you don’t trap that extra blood, you don’t get an erection. In the long run, excessive alcohol consumption can cause liver scarring, high blood pressure, and can damage your blood vessels resulting in erectile dysfunction.
A large number of trials have demonstrated a positive effect of testosterone treatment on bone mineral density (Katznelson et al 1996; Behre et al 1997; Leifke et al 1998; Snyder et al 2000; Zacharin et al 2003; Wang, Cunningham et al 2004; Aminorroaya et al 2005; Benito et al 2005) and bone architecture (Benito et al 2005). These effects are often more impressive in longer trials, which have shown that adequate replacement will lead to near normal bone density but that the full effects may take two years or more (Snyder et al 2000; Wang, Cunningham et al 2004; Aminorroaya et al 2005). Three randomized placebo-controlled trials of testosterone treatment in aging males have been conducted (Snyder et al 1999; Kenny et al 2001; Amory et al 2004). One of these studies concerned men with a mean age of 71 years with two serum testosterone levels less than 12.1nmol/l. After 36 months of intramuscular testosterone treatment or placebo, there were significant increases in vertebral and hip bone mineral density. In this study, there was also a significant decrease in the bone resorption marker urinary deoxypyridinoline with testosterone treatment (Amory et al 2004). The second study contained men with low bioavailable testosterone levels and an average age of 76 years. Testosterone treatment in the form of transdermal patches was given for 1 year. During this trial there was a significant preservation of hip bone mineral density with testosterone treatment but testosterone had no effect on bone mineral density at other sites including the vertebrae. There were no significant alterations in bone turnover markers during testosterone treatment (Kenny et al 2001). The remaining study contained men of average age 73 years. Men were eligible for the study if their serum total testosterone levels were less than 16.5 nmol/L, meaning that the study contained men who would usually be considered eugonadal. The beneficial effects of testosterone on bone density were confined to the men who had lower serum testosterone levels at baseline and were seen only in the vertebrae. There were no significant changes in bone turnover markers. Testosterone in the trial was given via scrotal patches for a 36 month duration (Snyder et al 1999). A recent meta-analysis of the effects on bone density of testosterone treatment in men included data from these studies and two other randomized controlled trials. The findings were that testosterone produces a significant increase of 2.7% in the bone mineral density at the lumber spine but no overall change at the hip (Isidori et al 2005). These results from randomized controlled trials in aging men show much smaller benefits of testosterone treatment on bone density than have been seen in other trials. This could be due to the trials including patients who are not hypogonadal and being too short to allow for the maximal effects of testosterone. The meta-analysis also assessed the data concerning changes of bone formation and resorption markers during testosterone treatment. There was a significant decrease in bone resorption markers but no change in markers of bone formation suggesting that reduction of bone resorption may be the primary mode of action of testosterone in improving bone density (Isidori et al 2005).
Hypogonadism is a disease in which the body is unable to produce normal amounts of testosterone due to a problem with the testicles or with the pituitary gland that controls the testicles. Testosterone replacement therapy can improve the signs and symptoms of low testosterone in these men. Doctors may prescribe testosterone as injections, pellets, patches or gels.
×