There's the rub, so to speak. Recalling the cautionary lessons learned about sex steroid hormone therapy in postmenopausal women from theWomen's Health Initiative, Dr. Brad Anawalt wrote in the Journal of Clinical Endocrinology and Metabolism, "We are threatened with a reprise of promiscuous prescription of sex steroid hormone therapy in aging men, obese men, diabetic men, and other groups of men with a high prevalence of low serum androgen levels. We are threatened with a mad 'T' party."
A recent study compared total and bioavailable testosterone levels with inflammatory cytokines in men aged 65 and over. There was an inverse correlation with the pro-inflammatory soluble interleukin-6 receptor, but no association with interleukin-6 (IL-6), highly sensitive CRP (hsCRP), tumor necrosis factor-α (TNF-α) or interleukin-1β (IL-1β (Maggio et al 2006). Another trial found that young men with idiopathic hypogonadotrophic hypogonadism had higher levels of proinflammatory factors interleukin-2 (IL-2), interleukin-4 (IL-4), complement C3c and total immunoglobulin in comparison to controls (Yesilova et al 2000). Testosterone treatment in a group of hypogonadal men, mostly with known coronary artery disease, induced anti-inflammatory changes in the cytokine profile of reduced IL-1β and TNF-α and increased IL-10 (Malkin, Pugh, Jones et al 2004).

Remember that each person is unique, and each body responds differently to treatment. TT may help erectile function, low sex drive, bone marrow density, anemia, lean body mass, and/or symptoms of depression. However, there is no strong evidence that TT will help memory recall, measures of diabetes, energy, tiredness, lipid profiles, or quality of life.
Cross-sectional studies have not shown raised testosterone levels at the time of diagnosis of prostate cancer, and in fact, low testosterone at the time of diagnosis has been linked with more locally aggressive and malignant tumors (Massengill et al 2003; Imamoto et al 2005; Isom-Batz et al 2005). This may reflect loss of hormone related control of the tumor or the effect of a more aggressive tumor in decreasing testosterone levels. One study found that 14% of hypogonadal men, with normal digital rectal examination and PSA levels, had histological prostate cancer on biopsy. It is possible that low androgen levels masked the usual evidence of prostate cancer in this population (Morgentaler et al 1996). Most longitudinal studies have not shown a correlation between testosterone levels and the future development of prostate cancer (Carter et al 1995; Heikkila et al 1999; Stattin et al 2004) but a recent study did find a positive association (Parsons et al 2005). Interpretation of such data requires care, as the presentation of prostate cancer could be altered or delayed in patients with lower testosterone levels.
Two of the immediate metabolites of testosterone, 5α-DHT and estradiol, are biologically important and can be formed both in the liver and in extrahepatic tissues.[147] Approximately 5 to 7% of testosterone is converted by 5α-reductase into 5α-DHT, with circulating levels of 5α-DHT about 10% of those of testosterone, and approximately 0.3% of testosterone is converted into estradiol by aromatase.[2][147][153][154] 5α-Reductase is highly expressed in the male reproductive organs (including the prostate gland, seminal vesicles, and epididymides),[155] skin, hair follicles, and brain[156] and aromatase is highly expressed in adipose tissue, bone, and the brain.[157][158] As much as 90% of testosterone is converted into 5α-DHT in so-called androgenic tissues with high 5α-reductase expression,[148] and due to the several-fold greater potency of 5α-DHT as an AR agonist relative to testosterone,[159] it has been estimated that the effects of testosterone are potentiated 2- to 3-fold in such tissues.[160]

Richard J. Wassersug, PhD, an adjunct professor of urology at the University of British Columbia, described his personal experience with androgen deprivation therapy (ADT). "If you are on ADT," he said, "and you see those Low T ads, what are you supposed to make of it? This produces a cognitive dissonance." He called the ads "hurtful" for suggesting that low testosterone makes a man less of a man.
Overall, it seems that both estrogen and testosterone are important for normal bone growth and maintenance. Deficiency or failure of action of the sex hormones is associated with osteoporosis and minimal trauma fractures. Estrogen in males is produced via metabolism of testosterone by aromatase and it is therefore important that androgens used for the treatment of hypogonadism be amenable to the action of aromatase to yield maximal positive effects on bone. There is data showing that testosterone treatment increases bone mineral density in aging males but that these benefits are confined to hypogonadal men. The magnitude of this improvement is greater in the spine than in the hip and further studies are warranted to confirm or refute any differential effects of testosterone at these important sites. Improvements seen in randomized controlled trials to date may underestimate true positive effects due to relatively short duration and/or baseline characteristics of the patients involved. There is no data as yet to confirm that the improvement in bone density with testosterone treatment reduces fractures in men and this is an important area for future study.
"By expanding the boundaries of this disease to common symptoms in aging males, such as fatigue and reduced libido, drug companies seek to increase their markets and boost their sales," wrote Barbara Mintzes, an assistant professor at the University of British Columbia School of Public Health, and Agnes Vitry, a senior research fellow at the University of South Australia, in a 2012 article in the Medical Journal of Australia .
Transdermal preparations of testosterone utilize the fact that the skin readily absorbs steroid hormones. Initial transdermal preparations took the form of scrotal patches with testosterone loaded on to a membranous patch. Absorption from the scrotal skin was particularly good and physiological levels of testosterone with diurnal variation were reliably attained. The scrotal patches are now rarely used because they require regular shaving or clipping of scrotal hair and because they produce rather high levels of dihydrotestosterone compared to testosterone (Behre et al 1999). Subsequently, non-scrotal patches were developed but the absorptive capacity of non-scrotal skin is much lower, so these patches contain additional chemicals which enhance absorption. The non-scrotal skin patches produce physiological testosterone levels without supraphysiological dihydrotestosterone levels. Unfortunately, the patches produce a high rate of local skin reactions often leading to discontinuation (Parker and Armitage 1999). In the last few years, transdermal testosterone gel preparations have become available. These require daily application by patients and produce steady state physiological testosterone levels within a few days in most patients (Swerdloff et al 2000; Steidle et al 2003). The advantages compared with testosterone patches include invisibility, reduced skin irritation and the ability to adjust dosage, but concerns about transfer to women and children on close skin contact necessitate showering after application or coverage with clothes.
×